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Abstract  

Rice (Oryza sativa L.) is the second largest cultivated cereal crop globally, and the most 

affordable source of protein and carbohydrates in tropical South America. An increasingly 

erratic climate risks damaging agricultural production in the region, with rice vulnerable to 

environmental extremes and shifting weather patterns. In Colombia, temperatures will increase 

5 to 7oC, alongside a reduction of 10% precipitation rates by 2100. This poses a significant  

threat to regional food security, whereby 60% of current rice cultivated land may be untenable 

by 2050. Resultingly, a multivariate approach is required to mitigate the damages these 

projections pose. Through precision agriculture (PA), a selection of Earth Observation (EO) 

metrics, climate variables, and in situ field measurements were collated to establish a robust 

method for rice yield prediction in an area of Tolima department, Colombia.  

A persistent issue with optical satellite EO in tropical regions is the high presence of cloud 

cover, limiting data availability. Filling these optical information gaps is crucial in the Tropics 

due to pertinent threats to food security. However, this can be mitigated using cloud penetrating 

Synthetic Aperture Radar (SAR) data. Resultingly, the relationship between Sentinel-2 

generated vegetation indices (VIs), and Sentinel-1 SAR metrics was assessed at different rice 

phenological stages using machine learning techniques. Here, a maximum performance of R2 

0.583 was generated with the Normalised Difference Vegetation Index (NDVI) while rice was 

at the vegetative development stage. Future improvements were explored, notably through 

further phenological division to minimise dielectric influence. 

Moreover, this investigation explored yield prediction capabilities of various rice cultivars, 

whereby reproductive EVI values, drought information, and seedling period proved most 

impactful to model prediction, generating robust predictions for Escobal 518 (R2 0.949), 

Triunfo (R2 0.697), and Fedearroz 68 (R2 0.551). Additionally, contrasting variable feature 

importance suggest proposed methods can be harnessed for managerial decision-making, with 

some cultivars more suitable to projected regional climate fluctuations. Resultingly, this 

investigation presents a robust strategy for rice yield prediction in a location crucial to 

Colombian food security, through a multivariate machine learning approach, while exploring 

cloud cover mitigation to optimise remotely sensed data coverage. 

Key words: precision agriculture, rice, yield, prediction, food security, machine learning, 

Sentinel-1, Sentinel-2, cloud cover 
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Chapter 1 

1.0. Introduction  
Demand for agricultural produce is predicted to increase over 50% by 2050 as the global 

population surpasses 9 billion (FAO, 2017; United Nations, 2019). The ability to predict 

agricultural yields accurately and methodically is increasingly crucial in meeting this challenge 

(Weiss et al., 2020). Effective yield prediction holds a multitude of advantages, including 

optimization of sustainable farming practices to meet projected climate changes (Wheeler and 

von Braun, 2013; Areal et al., 2018), stabilising food security (Di Falco et al., 2012; Biswas 

and Bhattacharyya, 2019; Weiss et al., 2020), and extrapolation to wider regions (Weiss et al., 

2020). 

Rice (Oryza sativa L.) is the second most cultivated cereal crop globally, with an approximate 

yield of 800 billion tonnes in 2018 (FAO, 2020). Owing to the inexpensive source of protein 

and carbohydrates, rice provides a vital component to South American diets (Zorilla et al., 

2012). Colombia heavily relies on rice, accounting for an average intake of 37.7 kg per person 

annually (Delerce et al., 2016), representing both the greatest production value and the second 

most produced crop by area nationally (DANE, 2016; Arango-Londoño et al., 2020). However, 

risks to production are increasingly apparent, threatening both local and national socio-

economic consequences (Meinke and Stone, 2005; Delerce et al., 2016). 

Colombia generates lower rice yields compared to neighbouring countries, while consumption 

per capita continues to rise (Castro-Llanos et al., 2019). This has introduced expanding reliance 

on imports, potentially threatening national food security (Castro-Llanos et al., 2019). These 

pressures are compounded by increasingly erratic weather conditions, which will negatively 

influence agricultural output (Delerce et al., 2016: Jiménez et al., 2019). Colombia is projected 

to experience an increase in both magnitude and frequency of these events in the coming 

decades; between 2005 and 2100, temperatures will surge by 5 to 7 oC, alongside a 10% 

precipitation reduction (Pachauri et al., 2014). Such influences could reduce Colombian rice 

production by between 5 and 29% (Iizumi et al., 2014; Quevedo Amaya et al., 2019), yet even 

more concerning is Castro-Llanos et al.’s (2019) notion that 60% of Colombia’s land currently 

cultivated for rice will be unmanageable by 2050, a reduction from 4.4 to 1.8 million hectares, 

owing to predicted rising temperatures and decreasing water availability. This is largely 

expected to effect land at lower elevations, while more elevated agricultural settings will be 

less impacted by climatic fluctuations (Castro-Llanos et al., 2019). Thus, the need for a robust 

https://www.sciencedirect.com/science/article/pii/S2211912419300070#!
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strategy to predict rice yields in areas with future scope for cultivation is crucial in ensuring 

national food security (Castro-Llanos et al., 2019; Jiménez et al., 2019; Weiss et al., 2020). A 

successful prediction strategy several months prior to harvest would prove invaluable to both 

regional farmers and national stakeholders (Noureldin et al., 2013). 

The implementation of Precision Agriculture (PA) through remotely sensed data in conjunction 

with machine learning technology allows for such a strategy in a systematic and methodical 

manner (Liakos et al., 2018). PA is an information and technology-based approach to identify, 

analyse, and combat spatial and temporal crop fluctuations, aiming to optimise profits and 

sustainability, while minimising environmental damage (Lillesand et al., 2015; Finger et al., 

2019). By harnessing a combination of EO metrics, environmental variables, and in situ field 

measurements, machine learning algorithms can be utilised to tackle weakened food security 

and climatic shifting on both a local and national level (Weiss et al., 2020). Machine learning 

is a valuable tool in PA practices, where modelling acts as a representation of the world based 

upon simplified assumptions (Spiegelhalter, 2019). PA provides a range of algorithms that 

harness large data volumes to automatically learn and improve upon existing correlations 

(Géron, 2019). This approach can ultimately uncover key factors determining yield production 

rates, allowing future improvements to agricultural practices (Chlingaryan et al., 2018; Weiss 

et al., 2020). 

A valuable metric retrieved from remotely sensed data are vegetation indices (VIs), these being 

mathematical quantities derived from spectral band ratios to better discern vegetation 

properties (Wiegand et al., 1979; Lillesand et al., 2015). However, the tropical South American 

climate experiences significant cloud coverage, something problematic when using optical 

satellite data (Filgueiras et al., 2019). The implementation of cloud-penetrating Synthetic 

Aperture Radar (SAR), can combat this, allowing data collection unimpeded by weather 

conditions sunlight (Torres et al., 2012). Thus, opportunity exists for combining optical and 

SAR-based satellite data for a hybrid approach, maximising coverage and available 

information (Filgueiras et al., 2019). Consequently, development of an extensive model to 

accurately predict rice yield is required, specifically focused on Colombia, to strengthen 

national food security during projected climate shifts (Zabel et al., 2014; Castro-Llanos et al., 

2019).  

The research detailed in this investigation will be structured accordingly: a precise overview 

of research aims and objectives; an extensive review of academic literature surrounding key 

https://www.sciencedirect.com/science/article/pii/S2211912419300070#!
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research themes; a detailed and justifiable strategy for rice yield prediction appropriate to the 

study area, alongside a robust approach to mitigate cloud coverage to maximise data 

availability; a thorough presentation and interpretation of investigative results, succeeded by a 

rigorous discussion of findings in relation to wider literature; concluding remarks of the 

research presented, alongside potential future exploratory research avenues. 

1.1. Aims and Objectives  

This investigation aims to explore an effective and methodical approach to rice yield prediction 

within an area of central-western Colombia deemed suitable for future rice production (Castro-

Llanos et al., 2019). A multivariate machine learning approach using remotely sensed data 

metrics, climate variables, and in situ field measurements will be explored to achieve this. To 

maximise optical data availability, cloud mitigation techniques will also be investigated. The 

completion of the investigative aims will be accomplished through the following objectives: 

• Obtain and perform quality assurance on field data and climate variables from the study 

area, which have proved influential during previous yield prediction investigations. 

• Identify appropriate EO data, undertaking necessary pre-processing and analysis to 

extract metrics.  

• Investigate relationships between optically retrieved metrics and SAR data using 

machine learning techniques to explore cloud mitigation prospects. 

• Using in situ GPS harvester measurements and EO metrics, determine vegetation index 

relationships to rice yield rates.  

• Ascertain efficient and successful machine learning algorithms to predict yield rates in 

the study area, employing a range of appropriate collated environmental variables, 

remotely sensed data metrics, and in situ field measurements. 

• Assess the prediction accuracy of cloud mitigation and yield prediction algorithms, 

while exploring the possibility for extrapolation to other locales. 

• Provide a detailed description of recommendations from investigative findings to 

benefit stakeholders, strengthen food security, and establish future avenues of research. 
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2.0. Literature Review  

A thorough review of PA practices will be delivered to explore the use of remote sensing 

techniques and machine learning for rice production. Specific focus will be given to combining 

multiple data sources for a hybrid approach, alongside the application of VIs. A detailed 

examination of past yield forecasting investigations will be presented, with significant 

emphasis on Colombia and neighbouring regions. This will provide a comprehensive 

understanding of surrounding literature and its influence upon the current body of work. 

2.1. Remote sensing in agriculture  

The main objective of PA is to harness remotely sensed spectral information to optimise 

managerial decision-making across both space and time (Whelan and Taylor, 2013). For 

effective implementation, remotely sensed data should fulfil several requirements: high spatial 

resolution for optimum data retrieval; high temporal resolution for sufficient crop phenological 

time-series coverage; high spectral resolution to enable detailed examination; and freely 

available open-source accessibility (Campos-Taberner et al., 2017; Weiss et al., 2020). 

Moreover, the platform used for remotely sensed data retrieval is an important consideration 

(Verger et al., 2014a; Zhou et al., 2017).  

Zhou et al. (2017) demonstrated success with aerially-retrieved data for rice detection and yield 

forecasting in China, benefiting from the diminished effects of cloud coverage compared to 

optical satellite data. Yet aerial data collection is often time consuming and costly compared to 

satellite data, and simply unrealistic in inaccessible regions (Weiss et al., 2020). Contrastingly, 

satellite-based remote sensing often benefits from extensive open-source repositories with 

sufficient temporal resolution, proving more suitable in certain circumstances focussing on 

developing countries (Weiss et al., 2020). Moreover, PA technology has been adopted for 

agricultural vehicles, one example being specialist harvesters which collate crop weight 

samples among other variables throughout harvesting (Leroux et al., 2018). This information 

is spatially collected through a Geographic Positioning System (GPS), which allows a ‘within-

plot’ yield map at regular intervals, rather than the more typical ‘overall-plot’ approach 

encompassing yield information per field (Pringle et al., 2003; Leroux et al., 2018).  

PA has benefitted from the continued development of remotely sensed VIs; spectral 

transformations derived from multiple specific regions of the electromagnetic spectrum 

(Lillesand et al., 2015). These often provide a deeper understanding of plant properties than 

typical band analysis, forming an integral part of yield forecasting (Xue and Su, 2017; 

Chlingaryan et al., 2018). 
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2.2.  Phenological monitoring with vegetation indices 

VIs utilise specific spectral band combinations to highlight relationships between remotely 

sensed data and vegetation properties (Wiegand et al., 1979; Lillesand et al., 2015). VI 

implementation for PA is abundant in prior research, including such applications as yield 

prediction (Johnson et al., 2016; Shiu and Chuang, 2019), canopy radiation use efficiency 

(Garbulsky et al., 2011), and establishing nitrogen content (Clevers and Gitelson, 2013; 

Delloye et al., 2018), yet their prediction accuracy for vegetative parameters has been 

questioned (Marshall et al., 2016; Alvino and Marion, 2017). Owing to the extensive choice of 

VIs, robust justification is necessary to determine the most effective for the research purposes 

(Panda et al., 2010; Xue and Su, 2017).  

Previous research has recognised the advantages of VIs in identifying rice phenology stages, 

generally divided into vegetative, reproductive, and ripening (Moldenhauer and Slaton, 2001; 

Kuenzer and Knauer, 2013; Ariza, 2019). Here, prophyll soil emergence initiates the vegetative 

stage, which involves significant plant height growth and leaf area expansion, alongside active 

tillering (Li et al., 2003; Yzarra Tito and Lopez Rios, 2011). Upon maximum tillering and stem 

elongation, the plant transitions to the reproductive stage, whereby energy is converted to 

panicle production and booting, while flowering follows the heading phase (Moldenhauer and 

Slaton, 2001). This marks the beginning of plant ripening, which is characterised by flowering, 

leaf senescence, and grain filling (Lin et al., 2014). Harvesting follows approximately 120 days 

after initial prophyll emergence, though this is dependent on rice cultivar and environmental 

conditions (Yoshida, 1981; Li et al., 2003; Kuenzer and Knauer, 2013). The array of growth 

stages presents altered spectral signatures, meaning rice phenology offers potential to be 

identified via VIs (Mosleh et al., 2015). Figure 2.1 highlights typical temporal variations in rice 

canopy spectra throughout development. 
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The Normalised Difference Vegetation Index (NDVI) has been used extensively during prior 

research to accurately forecast yield rates prior to harvesting (Rasmussen, 1997), and crop 

phenological stages (Ariza, 2019). The NDVI harnesses high red band spectral absorption 

associated with chlorophyll content, alongside strong reflectance upon the near infrared band, 

relating to mesophyll within the leaf structure, generating a notable ‘red edge’ response 

noticeable in Figure 2.1. (Sellers et al., 1992). Figure 2.2. provides a summarisation of rice 

phenological stages alongside corresponding NDVI values. Initially, lower NDVI values 

during germination relate to minimal vegetation. A positive correlation with NDVI and rice 

phenology exists following increases in vegetative density and leaf area. Here, rising 

chlorophyll content prompts wavelength absorption of the red band, while increased mesophyll 

levels following tillering and foliage development lead to heightened near infrared reflectance 

rates (Li et al., 2003; Yzarra Tito and Lopez Rios, 2011). As rice matures, a decreasing 

greenness, increasing yellowness, and reduced biomass following leaf decay result in a 

reduction in the NDVI (Kuenzer and Knauer, 2013; Mosleh et al., 2015). Therefore, a typical 

NDVI profile of healthy rice demonstrates a gradual rise, peaking at the reproductive stage 

approximately one to two months prior to harvest, followed by a decline as plant ripening 

Figure 2. 1. A visual representation of the spectral variation of a typical rice canopy throughout development, 

outlining how such variations can be monitored to determine plant phenology (retrieved from Chang et al. (2005). 
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progresses (Kuenzer and Knauer, 2013; Mosleh et al., 2015; Ariza, 2019). This highlights how 

VIs can benefit PA practices, with values corresponding to plant development (Mosleh et al., 

2015; Weiss et al., 2020). 

Ariza (2019) utilised this relationship to investigate rice phenology identification in Colombia, 

generating Vis from Sentinel-2 and Landsat 7 and 8 imagery. By attaining NDVI values at 16-

day intervals, Ariza (2019) predicted rice phenology with up to 72% accuracy using a Random 

Forest machine learning model. Additionally, Shihua et al. (2014) utilised the Enhanced 

Vegetation Index (EVI) to successfully establish rice growth cycles between vegetative, 

reproductive, and ripening stages, achieving a root mean square error (RMSE) of 10 days. 

Moreover, Shiu and Chuang (2019) used VIs alongside other variables for rice yield forecasting 

in Taiwan, applying the Support Vector Regression (SVR) machine learning method to achieve 

low error rates between 0.06% and 13.22%. The abundance of Vis has promoted their 

implementation in PA investigations, though this can be aided by other remotely sensed data, 

notably Synthetic Aperture Radar (SAR) (Weiss et al., 2020).  

2.3. A hybrid data approach 

Cloud coverage is a persistent obstacle in optical-based satellite investigations, particularly 

within tropical climates, causing difficulties in establishing robust data time-series’, among 

other challenges (Filgueiras et al., 2019; Weiss et al., 2020).  Data derived from airborne 

vehicles avoids this; Zhou et al. (2017) outlined the effectiveness of aerial-derived data for rice 

Figure 2.2. A general overview of the rice phenological stages throughout growth, namely vegetative, 

reproductive, and ripening, alongside corresponding NDVI value. (Modified from Kuenzer and Knauer (2013); 

Mosleh et al. (2015); Ariza (2019)). 
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detection and yield prediction, due to the diminished impact of cloud coverage. However, 

satellite-based remote sensing benefits from extensive open-source repositories and wider, 

continual coverage, often deemed more suitable in academic research, particularly within 

remote and developing locations (Weiss et al., 2020). Additionally, SARs cloud penetrating 

capabilities has opened research avenues whereby such data can be used in conjunction with 

optical satellite data to allow uninterrupted sensing, termed a hybrid approach (Filgueiras et 

al., 2019; Wu et al., 2019; Weiss et al., 2020). Table 2.1. provides a summary of prominent 

satellite-derived data successfully utilised during PA investigations. 

  

 

A hybrid approach has proven effective in prior PA investigations (Joshi et al., 2016; Filgueiras 

et al., 2019; Weiss et al., 2020). While optical data identifies vegetative spectral reflectance, 

 

Wavelength  Instrument 

(Agency) 

Spatial 

resolution 

(metres) 

Spectral 

bands (#) 

Swath 

width (km) 

Spectral resolution 

(μm)/Waveband 

Return 

period 

(days) 

Multispectral 

Worldview-3 

(Digital globe) 

1.24 28 13.1 8 MS: 0.4 - 1.04     8 

SWIR: 1.195 - 2.365 

<1 

RapidEye  5-6.5 5 78 VIS: 0.4 – 0.75 NIR: 

0.75 – 1.3 

1 

Sentinel-2A, B 

(ESA) 

10, 20, 30 

(VNIR) 

13 290 VIS: 0.4 – 0.75 

SWIR: 1.3 – 3.0 

5 

Landsat 8 (USGS, 

NASA) 

30 9 185 VIS: 0.4 – 0.75 

NIR: 0.75 – 1.3 

SWIR: 1.3 – 3.0 

16 

 

PlanetScope 

 

 

3 

 

4 

 

77 

 

VIS: 0.42 – 0.70 

NIR: 0.74 – 0.90 

 

<1 

Synthetic 

Aperture 

Radar (SAR) 

Sentinel-1A     C-

Band SAR (ESA) 

9, 20, 50 n/a 80, 250, 400 C-Band: 5.405 GHz; 

HH, VV, HH + HV, VV 

+ VH; MW (1-100 cm) 

6 

Sentinel-1B     C-

Band SAR (ESA) 

9, 20, 50 n/a 80, 250, 400 C-Band (8-4 GHz) 

 

6 

RADARSAT-2 

(SAR) (Canadian 

Space Agency) 

3-100 n/a 100-500 MW: 1-100 cm 

C-Band: 8-4 GHz 

24 

Table 2.1. Details of satellite data successfully applied during previous  PA investigations. Modified from  

Onojeghuo et al. (2018). 
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Synthetic Aperture Radar (SAR) data focuses on physical characteristics including leaf shape, 

size, structure, and water content (Woodhouse, 2005). Hybrid data can be advantageous in 

tropical regions such as Colombia, whereby persistent cloud coverage limits optical satellite 

usability (Yonezawa et al., 2012; Onojeghuo et al., 2018; Mansaray et al., 2020). Issues with 

SAR exist; random noise generation creates interpretative difficulties, while sensitivity to soil 

and vegetative water content owing to fluctuations in dielectric properties results in backscatter 

variability (Woodhouse, 2005; Vreugdenhil et al., 2018). However, the advantages offered by 

a hybrid approach are evident, whereby the combination of both optical and SAR information 

allow for greater exploration. Results have been encouraging in previous investigations; 

Filgueiras et al. (2019) demonstrated potential cloud cover mitigation during maize and 

soybean monitoring in Brazil, establishing a relationship between Sentinel-2 NDVI values and 

Sentinel-1 backscatter metrics. Filgueiras et al. (2019) trained the Random Forest (RF) 

algorithm with NDVI values alongside corresponding VV, VH, and normalised ratio procedure 

between bands (NRPB) values, allowing prediction of cloud masked NDVI values to an 

accuracy of R2 0.975. Moreover, Wu et al. (2019) utilised a hybrid approach to identify rice 

plots damaged by typhoon-derived flooding in Zhejiang, China, where an accuracy of up to 

93% was derived, again using RF. However, NDVI saturates once a vegetation density 

threshold is met and is an indicator of canopy greens, whereas radar backscatter responds to 

canopy architecture and moisture content (Woodhouse, 2005). This can result in discrepancies, 

whereby certain crops may in reality have low NDVI values, yet elevated backscatter values 

persist and cause discrepancies (Lillesand et al., 2015).  

2.4. Rice yield forecasting and machine learning 

Yield forecast delivery through the synthesis of multiple data sources is of consequence to 

numerous stakeholders, including local farmers, national governments, trade bodies, and 

international institutions (Kogan, 2019; Weiss et al., 2020). Further, precise yield forecasting 

is only increasing in importance as climate shifts become more impactful (Delerce et al., 2016). 

This is especially significant in less developed regions where food security can prove highly 

problematic (Castro-Llanos et al., 2019; Filippi et al., 2019; Kogan et al., 2019). Alongside 

this, agriculture in less developed countries can prove difficult to investigate, owing to 

increased heterogeneity, varied crop management, and smaller plot sizes (Castro-Llanos et al., 

2019; Weiss et al., 2020). Complications are compounded in tropical regions, where limited 

seasonal variation leads to diverse sowing dates (Esquivel et al., 2018; Quevedo Amaya et al., 

2019), while increased cloud coverage limits optical satellite data usability (Weiss et al., 2020). 
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As technology develops, the coalescence of remotely sensed data and machine learning may 

lead to assimilation where such issues are mitigated, perhaps allowing yield prediction much 

like weather forecasting (Weiss et al., 2020). This follows the ability of machine learning 

techniques to uncover detailed, non-linear relationships using many interconnected datasets, 

enabling efficient, unbiased decision-making (Chlingaryan et al., 2018). Provided is a review 

of investigations specifically harnessing machine learning technology for yield prediction. 

Numerous machine learning algorithms have been applied to optimise rice yield prediction 

(Mishra et al., 2016), namely Artificial Neural Networks (ANN) (Safa et al., 2004; Ji et al., 

2007; Gandhi et al., 2016), Support Vector Machines (SVM) (Jaikla et al., 2008; Ruß, 2009; 

Dey et al., 2017), Support Vector Regression (SVR) (Jaikla et al., 2008; Shiu and Chuang, 

2019), Regression Trees (RT) (Kim and Lee, 2016; Chlingaryan et al., 2018), Random Forest 

(RF) (Jeong et al., 2016), and K-Nearest Neighbour (KNN) (Chlingaryan et al., 2018). 

However, model accuracy is strongly reliant on algorithm choice, alongside the quality of data; 

noise, erroneous inputs, bias, and overall relevance to the objective must be considered 

(Chlingaryan et al., 2018; Liakos et al., 2018). Indeed, Halevy et al. (2009) has argued that data 

volume is more relevant to achieving higher performance than model selection. Thus, it is 

important to ensure data is of sufficient quality, while an array of models are utilised to 

determine the most suitable for the intended research (Kim and Lee, 2016).  

Chlingaryan et al.’s (2018) extensive review of machine learning for yield prediction concludes 

that the future of agriculture rests on synthesising remote sensing metrics, machine learning 

technology, and environmental variables. This has been widely demonstrated during rice yield 

prediction; Yaghouti et al. (2019) used VIs derived from Landsat 7 data for yield prediction in 

northern Iran. Using linear regression, they identified relationships using the NDVI at the end 

of the reproductive stage, producing an R2 0.71 between predicted and actual rice yields. 

Further, their most accurately predicted variety produced a root mean squared error (RMSE) 

272 kg ha-1 and normalised root mean squared error (NRMSE) 6%. Sarker et al. (2012) 

established that temperature and precipitation variables have a particularly significant 

contribution to rice yield prediction accuracy. Both variables are greatly influenced by a 

changing climate, demonstrating yield disparity is reliant on multiple factors (Verger et al., 

2014b; Weiss et al., 2020). Moreover, this outlines the increased likelihood of model success 

when independent, environmental variables are synthesised with further metrics (Delerce et al., 

2016; Liakos et al., 2018).  
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Demonstrating this, Jaikla et al. (2008) used SVR to predict rice yields with climate variables 

and in situ field measurements in Taiwan, resulting in a 2.9% error rate. Additionally, Yawata 

et al. (2019) used satellite data to assess approximately 3500 rice plots, with the intention of 

aiding national food security in Japan; using NDVI values from RapidEye and SPOT-6 satellite 

data, linear regression model prediction was improved by MAE 2.5% compared to 

conventional methods. Furthermore, Dammalage and Shanmugam (2018) used low resolution 

Landsat 8 and MODIS data for rice yield prediction in Polonnaruwa District, Sri Lanka for 

food security enhancement, primarily with the NDVI and EVI. EVI established a greater 

accuracy of 83.7% one month prior to harvest during heading and flowering stages, allowing 

accurate yield predictions approximately one month in advance.  

However, simple regression techniques can be limiting, with more complex modelling valuable 

during PA investigations for multiple reasons. Firstly, linear regression analysis relies on an 

assumption of normality, whereby the sample data requires a bell-shaped distribution to avoid 

overt bias (Géron, 2019). Further, some relationships may be non-linear, and would resultingly 

not be detected via simple linear methods (Deisenroth et al., 2020). Model performance 

inflation can also occur from multicollinearity, whereby variables share similar relationship 

trends, causing model overfitting and reduced prediction accuracy with unseen data samples 

(Géron, 2019). Finally, by utilising more complex models, data in a categorical format can be 

harnessed to greater effect alongside continuous information. However, increased model 

complexity often comes at the cost of computational efficiency, thus a balance is necessary 

depending on available resources and data volume (Géron, 2019; Deisenroth et al., 2020). 

Gandhi et al. (2016) utilised a more complex approach, specifically an ANN 10-fold cross-

validation method for rice yield prediction in Maharashtra state, India. Using crop information, 

satellite data, and climate variables, a maximum prediction accuracy of R2 0.975 was produced, 

alongside mean absolute error (MAE) of 0.0526 ton/ha, and RMSE of 0.1527 ton/ha (Gandhi 

et al., 2016). Gilardelli et al. (2019) also demonstrated the importance of data assimilation in 

PA, emphasising the ability of remotely sensed data to accentuate crop canopy variations at a 

sub-plot scale, something not possible with general climate variables. Here, rice yield 

prediction accuracy in northern Italy increased by over 2%, achieving an R2 value of 0.79, 

through inclusion of VIs, in situ field information, and climatic variables.   

Also demonstrating more advanced modelling, Zhang et al. (2019a) investigated rice yield 

forecasting in the Sahel, West Africa, with regards to climate influences. It was determined 
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that the biggest drivers influencing rice yield were precipitation rates, followed by maximum 

and minimum temperature. Here, ANN proved most successful, when compared alongside 

Gradient Boosting Regression (GBR) and multiple linear regression, yielding a performance 

of R2 0.952, and MAE 0.115 ton/ha (Zhang et al., 2019a). The projected decreasing rainfall 

alongside increasing temperatures is predicted to cause a dramatic decline in yield rates in the 

coming years, supported by Zhang et al.’s (2019a) findings. Following this conclusion, Zhang 

et al. (2019a) were able to establish management adaption recommendations for continued rice 

cultivation, including catchment basins to fully harness precipitation, alongside adaptable 

irrigation techniques to maximise water availability. Such recommendations for direct farmer-

level adoption are often overlooked but can be critical in establishing successful investigative 

outcomes (Weiss et al., 2020). Zhao et al. (2013) also examined rice management 

recommendations through machine learning, developing a PA system to improve yield and 

nitrogen use efficiency in northeast China, resulting in increased grain yield rates of 10% for 

local regional farmers.  

Analysis of regions closely aligned to the study area is useful to establish appropriate variables. 

Ji et al. (2007) examined rice yield prediction in mountainous areas within Fujian province, 

China, comparing the accuracy of ANN and linear regression analysis. Here, ANN achieved 

an R2 value of 0.67, while linear regression analysis achieved a lower R2 value of 0.52. This 

investigation is of intrigue because it shares a similar climate and elevation to the present thesis’ 

study area, albeit on a different continent. By studying research closely aligned the current 

body of work, knowledge gaps and influential components can be identified (Weiss et al., 

2020). Thus, prior research of rice yield prediction specifically in Colombia will be explored. 

2.5. Prior research in Colombia  

Research surrounding Colombian rice production is significant due to its direct relation to the 

present thesis, generally sharing climate projections and data coverage (Pachauri et al., 2014). 

Quevedo Amaya et al.’s (2019) investigation researched the most effective sowing date for 

optimal rice yield in Colombia. Concerning 10 sowing periods between 2015 and 2016, dry 

matter and plant height was studied, while environmental variables pertaining to temperature, 

precipitation and radiation were collated from a local weather station in Tolima department 

(Quevedo Amaya et al., 2019). Decision Tree (DT) algorithms were harnessed, while feature 

significance was determined through least squares regression. Here, solar radiation 

demonstrated the strongest relationship to yield, concluding that sowing in May and December 

would maximise corresponding yield rates (Quevedo Amaya et al., 2019). Alongside sharing a 
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similar study area, this investigation is relevant to the present research due to its strong focus 

on identifying prominent variables relating to rice yield in preparation for the changing climate.  

Ariza (2019) also studied within Tolima department, whereby VIs were utilised to identify rice 

phenology stages. This is valuable as the relatively stable climate allows rice production 

throughout the year, leading to varied coinciding development stages. By attaining NDVI 

values at 16-day intervals with Landsat 7 and 8 data, together with climatic variables and in 

situ field measurements, Ariza (2019) successfully established three machine learning 

approaches to predict rice growth periods: RF, SVR, and GBR, achieving overall accuracies of 

71.8%, 71.2%, and 60.9% respectively. This demonstrates how phenological identification can 

be undertaken using a variety of data to a high correlation, though results are reliant on cloud 

cover relief. 

Likewise, Delerce et al. (2016) assessed the relationship between both irrigated and rainfed 

rice yields to climate variables in Colombia, surveying production variations between cultivars 

and phenological stages for improved growing practices. In choosing a machine learning 

approach, Delerce et al. (2016) considered the presence of substantial data noise, non-linear 

relationships, and the need to identify the most relevant independent metrics while limiting 

data dimensionality. Such factors are equivalent to those faced during the present thesis. 

Delerce et al.’s (2016) investigation uncovered rice cultivar as the greatest influence upon yield 

prediction, alongside weather variables divided by phenology, with climate data contributing 

between 6% and 46% to yield variation. Cultivars tended to react differently to climate 

scenarios and phenological stages; increased temperatures at the reproductive stage negatively 

influenced yield in one cultivar, yet the opposite occurred during ripening, while another 

cultivar was negatively impacted by elevated temperatures at both the vegetative and 

reproductive stages (Delerce et al., 2016). Exploring this connection between cultivar, 

phenology, and climate is appropriate to ensure maximum future rice yields, whereby 

managerial recommendations can be given based upon projected weather conditions (Delerce 

et al., 2016).  

Delerce et al.’s (2016) investigation differed from the present thesis, whereby it relied solely 

on climatic variables and in situ field measurements. This investigation will therefore build 

upon prior research with the addition of EO metrics, allowing further understanding of the 

influence cultivar, phenological stages, and climate variables have on rice yield. By 

highlighting previous relevant work, key findings and alternative methods can be considered, 
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while existing knowledge gaps can be identified and explored. Table 2.2 presents a summary 

of previous research deemed most pertinent to this investigation, focussing on both rice yield 

prediction and cloud mitigation techniques. 
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                                    Table 2.2. A summary of investigations most pertinent to the present thesis regarding rice yield prediction and cloud mitigation. 

Author(s) Study Area Sensor/Data Methodology  Accuracy  Synopsis  

Quevedo 

Amaya et 

al. (2019) 

Armero-

Guayabal, 

Tolima, Colombia 

LAI, max diurnal temp, max 

night temp, min night temp, 

accum. solar radiation, accum. 

rainfall, avg. relative 

humidity. 

DT  Overall accuracy: 92% • LAI and solar radiation bestow greatest 

influence on yield. 

• Determined that sowing in May and 

December optimised yields. 

Shiu and 

Chuang 

(2019) 

Central Taiwan 47 variables consisting of 

vegetation and texture indices 

derived from SPOT-7, 

including NDVI, SAVI, RVI. 

SVR, MLR, 

GWR 

Error rate was between 0.06% 

and 13.22%; GWR highest 

performing. 

• GWR performed best following feature 

selection (Pearson’s correlation)  

• Required more complete satellite timeseries 

• Field measurements retrieved from hand 

sampling introduced limitations  

Yaghouti 

et al. 

(2019) 

Northern Iran Landsat 7 derived VIs: NDVI, 

SAVI, LAI, DVI. 

MLR R2 0.71; RMSE 272 kg ha-1; 

NRMSE 6% 

• Identified strong relationship between yield 

and NDVI values at rice flowering stage. 

Delerce et 

al. (2016) 

Tolima, Colombia In situ data, daily max and 

min temp, precipitation, 

relative humidity, solar 

radiation. 

RF Overall R2: 0.267 and 0.502 at 

Saldaña and Villavicencio, 

respectively. 

• Different cultivars and phenological stages 

demonstrate varied reactions to climate 

variables, particularly temperature. 

Wu et al. 

(2019) 

Zhejiang, China Sentinel-1 (VV, VH); 

Sentinel-2 (NDVI, EVI) 

RF  93%; kappa 0.9 (VH + NDVI) 

and 85%; kappa 0.8 (VV + 

NDVI) 

• Rice paddy identification by merging 

Sentinel-1 and Sentinel-2 metrics 

• Combination of VIs and backscatter yielded 

overall accuracy of up to 93%. 

Filgueiras 

et al. 

(2019) 

Bahia, Brazil Sentinel-1 (VV, VH, NRPD); 

Sentinel-2 (NDVI) 

RF; SVM; GBM RF: R2  0.975, RMSE 0.036, 

MAE 0.020; SVM: R2  0.920, 

RMSE 0.036, MAE 0.042; 

GBM: R2 0.932, RMSE 0.059, 

MAE 0.040. 

• Attempted to mitigate cloud cover of 

Sentienl-2 imagery using Sentinel-1 derived 

metrics 



24 
 

Chapter 2 

3.0. Methods  
This investigation seeks to establish a methodical approach to rice yield prediction at Hacienda 

El Escobal, a farm located on the Ibagué plateau in Tolima Department, central-western 

Colombia. This is among the 40% of agricultural land deemed suitable for rice production by 

2050 following climatic changes (Castro-Llanos et al., 2019), making it crucial in maintaining 

national food security. The investigation will therefore provide both local and national insight 

into rice yield prediction, while attempting cloud cover mitigation techniques to maximise 

optical satellite coverage. The work will follow four fundamental steps: data pre-processing 

and quality assurance, derivation of relevant metrics, model selection and application, and a 

robust assessment of model accuracy. Using the Python programming language throughout, 

data pre-processing was performed in the Linux interface, while all machine learning modelling 

was completed using Google Collaboratory in the Jupyter notebook cloud environment. A 

workflow summary detailing the methodology is presented in Figure 3.1. 
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Figure 3. 1. A summarised display of the methods presented as a workflow, highlighting key stages, processes, 

and outputs. 
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3.1. Study area 

Selecting an appropriate study area was dictated by several factors, namely sufficient satellite 

coverage, alongside accessibility to in situ field measurements and robust climate variables.  

Hacienda El Escobal, a farm located on the eastern outskirts of Ibagué, the regional capital city 

of Tolima Department, Colombia, facilitated these requirements. Featuring significant 

topographic variation with fine, inceptisol soils, Tolima is the greatest rice producing 

department in Colombia (Castilla-Lozano et al., 2011; Delerce et al., 2016). The tropical 

environment generates similar temperatures annually, while precipitation is bimodally 

distributed, with wet seasons across March, April, and May (MAM), and September, October, 

and November (SON) (Delerce et al., 2016; Esquivel et al., 2018).  

Hacienda El Escobal is located within the Colombian Andes mountain range between 4.3o N 

to 4.4o N latitude and 75.2o W to 75.0o W longitude, situated approximately 1000 metres above 

sea level. Previous research indicates this will prove a suitable elevation for rice cultivation by 

2050 following climatic shifts, meaning increased understanding of future yields in this area is 

desirable for regional and national food security (Castro-Llanos et al., 2019). The study area is 

located on the Ibagué plateau extending eastwards and surrounded by mountains, providing a 

source of rich and fertile soil. Experiencing bi-modal wet seasons means rice is cultivated 

throughout the year. Thus, crop phenological stages occur at varying stages dependent on plot. 

The study area remains irrigated via the contour-levee technique due to surrounding 

topography, enabling  a consistent water depth across topography when available. Figure 3.2. 

provides a detailed overview of the study area and the specific rice plots studied during this 

investigation.
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Colombia 

Figure 3.2. A context map of the study area presenting: (a) an outline of the area under investigation; (b) individual rice plots. 

(a) 

(b) 
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3.2. Research data 

Obtaining appropriate data from robust sources was important in ensuring reliable investigative 

results. Some farms maintain private agricultural records useful for research purposes (Delerce 

et al., 2016); Hacienda El Escobal holds various records from roughly 5 harvests. 

Encompassing approximately 1,250 hectares of rice cultivation, the farm provides information 

on past yields for entire plots, alongside variables collated from GPS-mounted harvesters 

including sample yield data within plots (Elescobal, n.d.). Moreover, information on sowing, 

initial emergence, and harvest dates is available, alongside cultivar specification. 

The study area receives coverage from the optical Sentinel-2 satellite, and the Sentinel-1 

Synthetic Aperture Radar (SAR) satellite constellations, with revisit times of 5 and 6 days 

respectively (Clerici et al., 2016). This ensures sufficient spatial, temporal, and spectral 

coverage at suitable resolutions (Campos-Taberner et al., 2017; Weiss et al., 2020), while 

maintaining open-source accessibility from the European Space Agency’s (ESA) Scientific 

Data Hub (Scihub.copernicus.eu, n.d.). Additionally, the proximity of several weather stations, 

alongside permissible access to historic climate simulation data (Meteoblue, n.d.), provided a 

thorough historical catalogue of pertinent variables. Therefore, appropriate climate data could 

be gathered from multiple sources for robust coverage. Some variables with multiple data 

sources were combined via averaging for a greater representation of the study area, while other 

variables were established via feature engineering. Using multiple sources was not possible in 

all circumstances, as some weather station data was stored monthly, while Meteoblue’s 

simulation data related to daily periods. Such details, alongside a thorough justification of all 

variables used throughout the investigation, are presented in Table 3.1. 
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Table 3.1. An overview of the data retrieved, pre-processed, and transformed for the purposes of rice yield prediction modelling in the study area. 

Data Type Metric (Unit) Description and Justification Source 

Field 

Measurements 

Yield (kg/ha) - 

Within and overall-

plot 

346 harvests across 132 individual plots were harnessed between 2016 and 2019 for the purposes of this investigation, 

allowing collection of within-plot data from harvester samples, alongside overall plot yield data. Yield was generated by 

dividing plot production (kg) by plot area (hectares) data, retrieved from in situ field measurements supplied by Hacienda 

El Escobal. 

Hacienda El Escobal 

Cultivar 

Cultivar variation is evident in the dataset, notably Escobal 312, Escobal 417, Escobal 518, Fedearroz 67, Fedearroz 68, 

Maja 6, Orizica, Panorama 394, and Triunfo. Cultivar has a significant impact on yield rates, owing to crop height, vegetative 

density, and growth period (Kuenzer and Knauer, 2013; Delerce et al., 2016; Zhou et al., 2017). 

Season 

Owing to the impact of Tolima’s bimodal seasonal variation on crop yield (Delerce et al., 2016; Esquivel et al., 2018), data 

was divided based upon sowing date into December-January-February (DJF), March-April-May (MAM), June-July-August 

(JJA), and September-October-November (SON). 

Seedling stage 

Using field measurements, seedling stage is time from sowing to emergence. Seedling stage is an important determinant of 

rice yield rates in Colombia (Delerce et al., 2016; Quevedo-Amaya et al., 2020), and elsewhere amongst other cereal crops 

(Shivrain et al., 2009; Wang et al., 2009). 

Growth time Refers to the period between crop emergence and harvest. (Thippani et al., 2017) 

Earth 

Observation 

 

NDVI Vegetative 

The Normalised Difference Vegetation Index (NDVI) is a widely used metric during agricultural investigations owing to its 

strong correlation to vegetative presence and rice yield prediction capabilities (González-Betancourt and Mayorga-Ruíz, 

2018; Shiu and Chuang, 2019; Yaghouti et al., 2019; Wu et al., 2019). Additionally, the NDVI, in combination with the EVI 

and SAVI, were harnessed by Munibah et al (2019) while investigating rice growth phases and yield relationships using 

Sentinel-2 data. 
Sentinel-2 data 

(Appendix A). 

NDVI Reproduction 

NDVI Ripe 

EVI Vegetative The Enhanced Vegetation Index (EVI) can prove beneficial in agricultural monitoring, owing to its lessened impact from 

saturation experienced by the NDVI from high density vegetative coverage (Zhang et al., 2019b). Recent use of the EVI 

during rice cultivation further highlights its effectiveness (Munibah et al., 2019; Wu et al., 2019). 

EVI Reproduction 

EVI Ripe 

SAVI Vegetative The Soil Adjusted Vegetation Index (SAVI) corrects any influence of soil brightness from areas of low vegetation, a useful 

characteristic while investigating crops at varied growth stages (Huete, 1988). SAVI has also been successfully used for 

similar purposes to the current investigation (Shiu and Chuang, 2019; Yaghouti et al., 2019). 

SAVI Reproduction 

SAVI Ripe 

Earth 

Observation 

Sentinel-1 VH 

Polarisation 

Metrics derived from Sentinel-1 data for application to cloud mitigation research. The implementation of VV, VH, and 

NRPB index follows the methodology of Filgueiras’s (2019) investigation into cloud mitigation in Brazil by establishing a 

Sentinel-1 data 

retrieved from 
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Sentinel-1 VV 

Polarisation 

relationship to the NDVI, and prior links between backscatter rations and VI values in agricultural settings (Veloso et al., 

2017). 

Scihub.copernicus.eu 

(n.d.). 

Sentinel-1 NRPB 

Climate 

variables 

Precipitation (mm) 

The cumulative amount of precipitation recorded at the study area throughout the growing period.  Precipitation is a key 

determinant in other machine learning-driven rice yield research, owing to its projected decline as the climate changes 

(Gandhi et al., 2016; Quevedo Amaya et al., 2019; Zhang et al., 2019a). 

Meteoblue (n.d.)., 

Perales Airport 

Weather Station Average 

temperature (oC) 

The average temperature recorded throughout the growing period. An increase in temperature is a key projection of the 

changing regional climate, causing significant impact upon yield rates (Quevedo Amaya et al., 2019; Zhang et al., 2019a). 

Wet frequency (days 

Calculated as the number of days whereby daily precipitation surpasses the precipitation average for each given month 

through the growing period. Wet day frequency has been found to impact rice yield variability more significantly than 

cumulative precipitation amounts in prior research (Revadekar and Preethi 2012; Fishman 2016), while Fernandes et al. 

(2020) also found that wet day frequency is a better yield indicator than total precipitation amounts, albeit only between 

June and August. 

Meteoblue (n.d.). 

 

Maximum and 

Minimum Temp. 

(oC) 

The maximum and minimum recorded temperatures throughout the growing period. The variables proved a beneficial input 

in previous work regarding rice yield prediction (Sumith et al., 2002; Maruyama, 2013),  including Tolima Department, 

Colombia (Quevedo Amaya et al., 2019). 

Drought frequency 

(days) 

Number of days per month where no precipitation was recorded, measured throughout the growing period. Provides an 

alternative avenue to wet frequency, whereby the impact of decreasing rainfall can be evaluated, a key element of the 

changing climate in the region (Heinemann and Sentelhas, 2011; Heinemann et al., 2015). 

Average relative 

humidity (%) 

The average recorded humidity recorded at the study area throughout the growing period. Beneficial input in previous work 

regarding rice yield prediction (Sumith et al., 2002; Maruyama, 2013),  including Tolima Department, Colombia (Quevedo 

Amaya et al., 2019). 

Sunlight (mins) 
The cumulative amount of sunlight in minutes received by the study area over the course of the growing period. Beneficial 

in previous work regarding rice yield prediction in Tolima Department, Colombia (Quevedo Amaya et al., 2019). 
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3.3.0. Data Pre-processing  

Prior to modelling, data required pre-processing and preparation. This section provides 

information on these steps. 

3.3.1. Sentinel-2 Pre-processing 

Sentinel-2 data was retrieved from the European Space Agency’s (ESA) Scientific Data Hub 

(Scihub.copernicus.eu, n.d.), covering the period where in situ field measurements were 

available between 2016 and 2019. Sentinel-2 data required conversion to Analysis Ready Data 

(ARD), achieved using Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) 

software (Bunting, 2014). This process involved the conversion of Digital Number (DN) pixel 

values to sensor radiance, Top of Atmosphere (ToA) reflectance generation, and application of 

the Dark Object Subtraction (DOS) method (Chavez, 1996) to transform data to surface 

reflectance.  

Raw satellite data is supplied as DNs, these being pixel values prior to conversion to a 

quantitative measure such as radiance (Mather and Koch, 2011). Radiance is understood as a 

measure of wavelength energy in watts obtained by a sensor, radiated by a unit area, per solid 

angle of measurement, per nanometre; this equation is abbreviated to W ·sr−1 ·nm−1 (Mather 

and Koch, 2011), calculated as follows: 

Eq. (1) 

𝐿𝜆 = (
𝐿𝑀𝐴𝑋𝜆 − 𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙 𝑚𝑖𝑛 − 𝑄𝑐𝑎𝑙 𝑚𝑎𝑥
) (𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁𝜆 

 

Conversion to ToA reflectance is necessary as radiance energy and at-sensor measurements 

diverge, owing to different solar zenith angles following time variations between data 

acquisitions, alongside disparities in solar irradiance from spectral band sensor differences 

(Lillesand et al., 2015). The equation follows: 

Eq. (2) 

𝜌𝜆 =
𝜋 ∙ 𝐿𝜆 ∙ 𝑑2

𝐸𝑆𝑈𝑁𝜆 ∙ cos (𝜃𝑠)
 

 

Establishing surface reflectance mitigates pixel value distortion from radiation scattering and 

absorption, a result of atmospheric aerosols and water vapour (Bunting, 2014). DOS adopts the 
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premise that the darkest pixel values from each image band are the product of atmospheric 

scattering, requiring removal (Chavez, 1996). Following this, Sentinel-2 data was considered 

an accurate representation of surface reflectance.  

Owing to the study area’s tropical location, cloud masking was necessary to remove distorted 

imagery (Filgueiras et al., 2019). Following Wang et al.’s (2016) data fusion methodology, 

band resolution was resampled from 20 m to 10 m via the nearest neighbour method using 

ARCSI, with bands subsequently sharpened using a 7x7 pixel filter for band specific linear 

regression (Bunting, 2014). Additionally, bands 1, 9, and 10 were excluded from ARD as they 

are typically used for atmospheric corrections (Wang et al., 2016). Table 3.2. details the 

resulting Sentinel-2 band information used during this investigation. 

 

Table 3.2. Sentinel-2 band information in ARD format, following all necessary pre-processing measures. 

 

 

 

 

 

 

 

 

 

 

3.3.2. Vegetation Indices preparation  

 Determining the most suitable VIs required careful consideration, with the NDVI, EVI, and 

SAVI deemed the most appropriate for the investigation, owing to their success in past research 

in comparable locales (Panda et al., 2010; Cheng and Wu, 2011; Noureldin et al., 2013; Son et 

al., 2014; Zhou et al., 2017; González-Betancourt and Mayorga-Ruíz, 2018; Shui and Chuang, 

2019; Yaghouti et al., 2019; Wu et al., 2019). The selection of the NDVI, EVI, and SAVI was 

reinforced by Munibah et al (2019), who opted for these indices during a similar investigation 

into rice yield prediction in climatically comparable West Java, Indonesia, using Sentinel-2 

Band Number Band Details Central Wavelength (nm) 

1 Blue 496.6 

2 Green 560 

3 Red 664.5 

4 Red 5 703.9 

5 Red 6 740.2 

6 Red 7 782.5 

7 NIR 8 835.1 

8 NIR 8a 864.8 

9 SWIR 1 1613.7 

10 SWIR 2 2202.4 



33 
 

data. Furthermore, Duan et al. (2019) successfully used these indices during rice yield 

prediction with airborne data, demonstrating their value for possible extrapolation. 

VIs were batch-generated within the Linux interface using Python RSGISLIB (Bunting et al., 

2014). Sentinel-2’s band 8a was designated the suitable NIR band during VI calculations, owing 

to its compatibility with other sensors (Zhang et al., 2018), alongside increased precision in 

previous PA investigations compared to band 8 (Li et al., 2017a; Zhang et al., 2017). Further, 

its application in VIs has shown less inclination to saturation, providing more valuable data 

(Tesfaye and Awoke, 2020). The NDVI, EVI, and SAVI were calculated using the equations 

presented in Table 3.3., where Red (664.5 nm), NIR (864.8), and Blue (496.6 nm) are Sentinel-

2 bands 3, 8, and 10, respectively. 

 

Table 3.3. The VIs harnessed during the investigation, alongside specific formulation, and band information. 

 

An example of generated indices is presented in Figure 3.3., displaying NDVI, EVI, and SAVI 

values from the study area on 31st October 2018.  

Vegetation 

Index 
Equation Band wavelengths (m) Justification 

NDVI (eq.3) 𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

NDVIB8a 

(864.8, 664.5) 

Rouse et al. 

(1973) 

EVI (eq.4) 𝐸𝑉𝐼 = 2.5 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

((𝑁𝐼𝑅 + 𝐶1 𝑅𝑒𝑑 − 𝐶2 𝐵𝑙𝑢𝑒) + 𝐿)
 

EVIB8a 

(864.8, 664.5, 496.6, C1 = 6, 

C2 = 7.5, L = 1, G = 2.5) 

Liu and Huete 

(1995) 

SAVI (eq.5) 𝑆𝐴𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)(1 + 𝐿)
 

SAVIB8a 

(864.8, 664.5, L = 0.5) 
Huete (1988) 
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Correlations between VI values and yield rates were assessed via two methods, namely an 

overall and within-plot approach. An overall-plot approach collated average NDVI, EVI and 

SAVI values at the vegetative, reproductive, and ripening phenological stages, which were then 

compared to in situ overall plot yield data for each harvest. Phenology division has proven 

valuable during past research assessing rice yield prediction (Delerce et al., 2016; Ariza, 2019). 

(a) 

(b) 

(c) 

EVI 

NDVI 

SAVI 

Figure 3.3. An overview of generated VIs covering all plots within the study area, specifically (a) NDVI, (b) 

EVI, and (c) SAVI. Variation in phenological stages is evident. Generated from Sentinel-2 imagery captured on 

31st October 2018 
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The alternative within-plot method retrieved the same VI values from phenological stages, 

though these were gathered from individual in situ GPS sample points, corresponding to 

locations of harvester sample yield collections. Resultingly, each sample had associated index 

values. Necessary data preparation was achieved as follows; after generation and phenological 

division, values were collated from each index using QGIS point sampling tool from GPS 

sample points supplied by the Hacienda El Escobal, sufficiently covering each pixel. Using 

Panek and Gozdowski’s (2020) method, overall-plot data was then generated by averaging all 

VI point values per plot. Contrastingly, within-plot data was gathered from all harvester 

sampling points again using QGIS point sampling tool, meaning each sample weight had 

corresponding VI values.  

Phenological division was crucial during analysis, achieved by stacking all Sentinel-2 scenes 

from a specific plot throughout a growing season according to in situ field measurements, 

enabling a time-series analysis of key growth stages (Ariza, 2019). Figure 3.4. provides a 

representation of this, whereby stacked VI values are generated to allow analysis of crop 

phenological development. Information on emergence and harvest dates for individual plots 

allowed a precise overview of crop development stages. Scenes were assigned as either 

vegetative, reproductive, or ripening, encompassing roughly 65, 35, and 20 days respectively, 

though this varies by cultivar (Kuenzer and Knauer, 2013; Mosleh et al., 2015). Stages captured 

with multiple times by satellite were combined via averaging, while plots with insufficient 

coverage were removed. Where only one phenology was unobtainable, an average value was 

imputed using corresponding plots of the same cultivar and development stage, with Scikit-

Learn’s ‘SimpleImputer’ function (Pedregosa et al., 2011). 

Vegetative                           Reproductive                          Ripening 

Figure 3.4. A representation of NDVI data masked to plot 27a and divided to three phenological stages, namely 

vegetative, Reproductive, and Ripening. 
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Using this combination of in situ data with typically observed rice phenological sequencing 

(Kuenzer and Knauer, 2013; Mosleh et al., 2015; Ariza, 2019), an accurate representation of 

crop development was established in the study area. This is demonstrated in Figure 3.5., which 

details plotted NDVI values to demonstrate the trend of rice growth from the vegetative stage, 

peaking at the reproductive stage, and beginning to fall upon ripening (Kuenzer and Knauer, 

2013; Mosleh et al., 2015; Ariza, 2019). This trend was considered to accurately divide data 

by phenology. 

 

3.3.3. Sentinel-1 Pre-processing 

Sentinel-1 data required pre-processing to avoid error propagation during cloud mitigation 

analysis (Filgueiras et al., 2019). Following Filgueiras et al.’s (2019) methodology, Sentinel-1 

data captured on the same day as corresponding Sentinel-2 imagery was identified and retrieved 

in level 1 Ground-Range Detected (GRD) format, producing 8 matches (Appendix A). Pre-

processing was achieved using ESA’s Sentinel Application Platform (SNAP) Sentinel-1 

Toolbox version 7.0.3., with steps automated using the Graph Builder (SNAP, n.d.). Both 

Vertical Vertical (VV) and Vertical Horizontal (VH) SAR polarisations were harnessed to 

determine their effectiveness during modelling, alongside a generated normalised ratio 

procedure between bands (NRPB) index, for additional correlation testing (Filgueiras et al., 

2019). 

Figure 3.5. A plotted line graph detailing the corresponding NDVI values to phenological stage plotted from 

stages from plot 27a in Figure 3.4. This rising, peaking, and falling trend is typical rice response to NDVI and 

other VIs as detailed is prior investigations (Kuenzer and Knauer, 2013; Mosleh et al., 2015; Ariza, 2019). 
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Firstly, orbital data correction, automatically retrieved from ESA’s product metadata, was 

assigned to each image, allowing positioning between the orbital track and sensor. DNs were 

radiometrically calibrated and normalised, while backscatter image intensity values were 

converted to sigma nought, which refers to reflective strength in terms of the geometric cross 

section of a conducting sphere that would give rise to the same level of reflectivity (Filgueiras 

et al., 2019; Filliponi, 2019; Truckenbrodt et al., 2019). Noise removal followed, whereby 

thermal-induced disparities to pixel data were normalised throughout each scene (Filliponi, 

2019). Additional granular noise resulting from scattering was mitigated with the Refined Lee 

filter using KNN to determine average values across neighbouring pixels, and removing 

anomalous values (Yommy et al., 2015; Filliponi, 2019). 

Range Doppler Terrain Correction mitigated geometric distortion from Sentinel-1’s side-

looking method of data capture; by applying the SRTM 1 Second HGT Digital Elevation Model 

(DEM), pixel distortions were rectified (Fillioponi, 2019). This was performed using bilinear 

interpolation resampling, owing to use in prior investigations (Truckenbrodt et al., 2019), and 

aligned to the target Coordinate Reference System (CRS), UTM Zone 18 / World Geodetic 

System 1984. Data was converted from a unitless coefficient to decibels (dB) through a 

logarithmic transformation procedure, allowing comparison to VI values (Fillioponi, 2019). 

3.4. Cloud cover mitigation 

Cloud coverage persists in the study area’s tropical climate, causing optical data voids. To 

mitigate information gaps and enable improved rice monitoring, attempts to determine 

correlations between VI data and backscatter metrics were explored, following prior success 

(Filgueiras et al., 2019). Filgueiras et al. (2019) identified a strong relationship between NDVI 

and backscatter metrics in Brazil, with an R2 value of 0.98 (Filgueiras et al., 2019). Therefore, 

this was replicated with subsequent pre-processing steps detailed in Section 3.3.3. VV and VH 

polarisations were harnessed to generate the NRPB index, due to its relationship to VIs in 

agricultural settings (Veloso et al., 2017; Vreugdenhil et al., 2018; Filgueiras et al., 2019). 

NRPB is calculated via: 

Eq. (6) 

𝑁𝑅𝑃𝐵 =  
(𝜎𝑉𝐻 − 𝜎𝑉𝑉)

(𝜎𝑉𝐻 + 𝜎𝑉𝑉)
 

Following this, VV, VH, and NRPB variables were evaluated to determine their correlation to 

VI values of the same capture date. Variables were stacked by capture data, ensuring pixels 
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from each metric covered the same respective area using the ‘Set output file resolution’ QGIS 

tool (de Leeuw et al., 2014). An example of all six variables from 31st October 2018 is displayed 

in Figure 3.6. 

 

1000 randomly stratified points per plot were generated, with a negative 10 m buffer to 

eliminate boundary and GPS error. Point values from variables were extracted via QGIS’s 

sample raster values tool. Following this, collated values were arranged by VI and phenological 

stage, allowing further analysis through machine learning techniques. Previous PA research 

with SAR data reinforces this, where the best performances were attained using a machine 

learning approach (Sivasankar et al., 2018; Filgueiras et al., 2019). 

3.5.0. Modelling process  

Several factors were considered when determining the appropriate modelling approach for this 

investigation, including: the presence of erroneous data, likely non-linear relationships between 

variables, high multicollinearity, and identifying the most impactful data (Delerce et al., 2016). 

(a) (b) (c) 

(d) (e) (f) 

Figure 3.6. An example of each variable used for cloud mitigation research: (a) NDVI, (b) EVI, (c) SAVI, (d) 

VH, (e) VV, and (f) NRPB. All variables have been clipped to Plot 12, whereby values can be retrieved from 

generated points for correlation modelling. Data capture date was 31st October 2018. 
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The following section details the resulting modelling process, concerning both cloud mitigation 

and rice yield prediction. 

3.5.1. Quality assurance and pre-processing  

Quality assurance is critical when preparing raw data for machine learning to avoid 

inaccuracies associated with poor data structure and erroneous features (Géron, 2019). Using 

Scikit-Learn’s ‘SimpleImputer’ function (Pedregosa et al., 2011), columns with missing data 

were replaced with mean values from available information. In addition, categorical variables 

required transformation into a numerical format for model compatibility (Géron, 2019; 

Deisenroth et al., 2020). Scikit-Learn’s ‘OneHotEncoding’ function (Pedregosa et al., 2011) 

was harnessed, which converts categorical strings to numerical values in accordance with 

category (Deisenroth et al., 2020). 

Prior to model implementation, data was separated into training and testing sets for dependent 

and independent variables. While the training data is used to fit the model, test data allows 

model assessment with an unseen data selection. This enables assessment of model 

generalization, this being its ability to adapt to unseen datasets (Deisenroth et al., 2020). Using 

Scikit-Learn’s ‘train_test_split’ function (Pedregosa et al., 2011), values were split 80% 

training and 20% testing, allowing robust performance analysis (Deisenroth et al., 2020). 

Further, feature scaling was required to merge all variables to the same planar scale, crucial to 

avoid algorithms automatically assuming higher values have elevated influence, while also 

allowing faster convergence for increased computational efficiency (Deisenroth et al., 2020). 

Using Scikit-Learn’s  ‘StandardScaler’ (Pedregosa et al., 2011), variables were transformed to 

scale, computing mean and standard deviation upon the training set to implement upon the test 

set.  

3.5.2. Variable multicollinearity and feature selection  

Multicollinearity relates to substantial dependency between variables, skewing model 

performance (Chlingaryan et al., 2018; Géron, 2019). This causes potential inflated error if 

multiple variables are similar, increased model variance, and substantial dependence on limited 

data, termed overfitting (Dormann et al., 2013; Chlingaryan et al., 2018). By mitigating 

multicollinearity, feature selection generally allows faster and more efficient computation, 

resulting in a more robust model (Chlingaryan et al., 2018; Géron, 2019). 

Variable multicollinearity analysis utilised Pearson’s correlation coefficient of determination. 

Positive 1 signifies total linearly positive correlation, negative 1 displays total linearly negative 
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correlation, while 0 signals no linear collinearity. Values greater than positive and negative 0.7 

were considered eligible for removal owing to significant multicollinearity (Dormann et al., 

2013). The equation is as follows: 

Eq. (7) 

𝑟 =
𝑛(∑ 𝑥𝑦)(∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]
 

As Pearson’s coefficient only considers linear relationships, an alternative method was 

necessary; the Variance Inflation Factor (VIF) examines multicollinearity through ordinary 

least squares regression analysis (Deisenroth et al., 2020). This measures variance increase 

based upon multicollinearity between variables (Deisenroth et al., 2020). A score threshold of 

10 was used, with greater values indicating significant multicollinearity requiring removal 

(Dormann et al., 2013). The VIF equation follows: 

Eq. (8) 

𝑉𝐼𝐹 =
1

1 − 𝑅𝑖
2 

 

3.5.3. Model selection 

Initial model selection employed successful algorithms from prior investigations for 

preliminary performance analysis. Moreover, an Automated Machine Learning (AutoML) 

approach, specifically the TPOT library (Olson and Moore, 2016), was used to gain concealed 

insight into model hyperparameters and feature selection criteria.  TPOT’s stochastic nature 

allows an initial overview of models to explore further (Olson and Moore, 2016). 

Alongside TPOT, the following models were implemented using Scikit-Learn library 

(Pedregosa et al., 2011) with default settings to develop a general performance overview: 

Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Random Forest (RF), 

Support Vector Regression (SVR), Gradient Boosted Regression (GBR), and Extreme Gradient 

Boosting (XGBoost). SLR is applied where only one independent variable was present, where 

ordinary least squares with two-dimensional data was harnessed to determine the linear 

function best predictive of the dependent variable (Géron, 2019). Where multiple independent 

variables were available, MLR was used, following the same approach but with dimensions in 

accordance with the number of variables. The RF ensemble regression approach used decision 
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trees to establish the most accurate performance metrics (Brieman, 2001; Chlingaryan et al., 

2018). Additionally, SVR predicts planar data distributions through conversion of non-linear 

data to higher dimension feature space (Smola and Schölkopf, 2004). GBR is an additive 

machine learning approach, whereby model performance is optimised through error rates of 

the gradient loss function for a given number of weak prediction models (Géron, 2019). 

XGBoost is a modified version of GBR, which follows the same scalable process, but with 

increased speed (Chen and Guestrin, 2016). 

The most successful preliminary models were tuned using Scikit-Learn’s 

‘RandomizedSearchCV’ function (Pedregosa et al., 2011), a grid of hyperparameters defined 

and randomly sampled via K-fold cross validation by a given number of iterations. Values were 

further explored via Scikit-Learn’s ‘GridSearchCV’. This differs from RandomizedSearchCV 

by evaluating all defined hyperparameter combinations, allowing a more focussed approach. 

Figure 3.7. visualises of both cross-validation methods, outlining how both in conjunction with 

one another can maximise model performance. 

 

 

3.6. Model accuracy assessment 

Modelling is essentially a representation of reality through observed data, meaning residual 

error is an inevitable consequence and can be used to determine accuracy (Spiegelhalter, 2019). 

This is achieved by effectively measuring the distance between the predictor variable vector 

and the target value vector (Géron, 2019). Following division between training and testing, 

Figure 3. 7. A diagram displaying (a) the grid search cross validation and (b) randomised search cross 

validation. This outlines how the two methods can produce varied results. Figure retrieved and modified from 

Bergstra and Bengio (2012). 
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robust accurate assessment of training data could be achieved using unseen values (Deisenroth 

et al., 2020). Consequently, various accuracy metrics were generated for rigorous model 

performance analysis. 

Ranging between 0 and 1, the R2 coefficient of determination measures variability of predicted 

values in relation to actual data (Géron, 2019; Deisenroth et al., 2020). An R2 greater than 0.6 

indicates high correlation, though error values should be considered (Alexander et al., 2015; 

Iizuka et al., 2020). R2 is calculated via the following equation, y being the independent 

variable, �̂� referring to the predicted y value, and �̅� the mean value of y: 

Eq. (9) 

𝑅2 = 1 −
∑(𝑦𝑖 − �̂�𝑖)

2

(𝑦𝑖 − �̅�𝑖)2
 

 

The Mean Absolute Error (MAE) is alternative performance metric that gives little credence to 

large outlier errors (Deisenroth et al., 2020), calculated via: 

Eq. (10) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

 

The Root Mean Squared Error (RMSE) provides information on model error rates, with 

increased sensitivity to large outlier errors (Deisenroth et al., 2020). The RMSE is calculated 

through the following equation:  

Where n refers to the number of instances, 𝑦𝑖 refers to the vector of values of the ith instance in 

the dataset, and �̂� is the predicted value of y. 

Eq. (11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1
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Chapter 3 

4.0. Results  

4.1. Cloud cover mitigation 

A summary of cloud mitigation results is displayed in Table 4.1. Following multicollinearity 

analysis, VV alongside the NRPB index proved the most appropriate independent variables. 

Consequently, the VH polarisation was removed from further analysis due to a weaker 

correlation, likely due to differing crop canopy reactions compared to VV (Woodhouse, 2005). 

Additionally, NDVI values demonstrated the strongest relationship to Sentinel-1 metrics from 

the three VI’s among all phenological stages. XGBoost was generally the best performing 

algorithm, during both vegetative and reproductive stages.  

Research revealed notable correlations within vegetative and reproductive phenological stages. 

Although the vegetative stage displayed the highest R2 output, analysis of the reproductive 

stage proved more consistent, generating an R2 value of over 0.530 for each model, while 

maintaining minimal RMSE and MAE values. NDVI was the most effective VI predictor, 

whereby results of 0.583 (R2), 0.114 (RMSE), and 0.155 (MAE) for vegetative stage and 0.578 

(R2), 0.016 (RMSE), and 0.020 (MAE) for reproductive stage were generated using XGBoost. 

These results present a relatively consistent correlation, with specified SAR metrics accounting 

for almost 60% of NDVI variation approximately one month prior to harvest. This 

demonstrates the possibility for optical cloud mitigation during this crop development period. 

However, further error reductions and correlation analysis is necessary before wider 

implementation (Alexander et al., 2015).  

Elevated MAE and RMSE values during the vegetative phase perhaps stem from the 

phenology’s timeframe, covering a period of development longer than the reproductive and 

ripening stages combined (Kuenzer and Knauer, 2013; Mosleh et al., 2015). The vegetative 

phenology also sees large structural change, from initial prophyll emergence to canopy closure 

during maximum tillering and stem elongation, meaning Sentinel-1’s high backscatter response 

to plant architecture likely caused substantial error variations. Further, fluctuating dielectric 

properties responding to soil moisture adjustments likely contributed to error, whereby early-

stage vegetative would be dominated by soil, while later-stage vegetative following canopy 

closure would diminish its impact on backscatter (Bousbih et al., 2017; Filgueiras et al., 2019). 

Consequently, a higher variation in backscatter values during the more precise stages of the 
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vegetative phenology, namely germination, tillering, and stem elongation (Zheng et al., 2016), 

may have triggered elevated error.  

Contrastingly, soil and ripening stages performed poorly; soil garnered a maximum R2 value 

of 0.078, with 0.033 (RMSE) and 0.042 (MAE) using RF. As previously mentioned, the 

influence of fluctuating soil dielectric properties likely influenced this, whereby changing soil 

moisture levels dramatically alter backscattering. Moreover, ripening scored a maximum R2 

0.373, 0.068 (RMSE), and 0.058 (MAE) using RF. During this stage, spectral response changes 

dramatically following plant yellowing and panicle decay as chlorophyll content decreases, 

limiting correlations (Kuenzer and Knauer, 2013). 
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Table 4.1. A display of results obtained through cloud mitigation by combining VI and backscatter values across multiple dates. Following analysis, VV and NRPB backscatter values were 

used due to correlation to all VIs, while maintaining little multicollinearity.  Highlighted values indicate significant results. 

 

 

 

 

Algorithm Vegetation Index (VI) 

Soil Vegetative Reproductive Ripening 

R2 
MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 

Multiple linear 

NDVI -0.017 0.032 0.038 0.323 0.160 0.197 0.568 0.017 0.020 0.180 0.066 0.081 

EVI 0.001 0.024 0.031 0.289 0.119 0.150 0.471 0.035 0.043 0.029 0.068 0.084 

SAVI -0.035 0.020 0.027 0.299 0.106 0.133 0.552 0.023 0.029 0.0428 0.053 0.064 

RF 

NDVI 0.078 0.033 0.042 0.551 0.125 0.165 0.536 0.017 0.021 0.373 0.048 0.058 

EVI 0.115 0.022 0.029 0.532 0.095 0.128 0.280 0.045 0.055 0.068 0.060 0.075 

SAVI 0.153 0.019 0.025 0.563 0.082 0.110 0.355 0.030 0.037 0.105 0.043 0.054 

SVR 

NDVI 0.067 0.033 0.042 0.391 0.159 0.196 0.530 0.015 0.020 0.086 0.06 0.076 

EVI 0.048 0.021 0.030 0.373 0.121 0.152 0.320 0.051 0.059 -0.060 0.071 0.085 

SAVI 0.016 0.021 0.028 0.374 0.094 0.135 0.369 0.034 0.040 -0.019 0.051 0.062 

GBR 

NDVI -0.053 0.030 0.038 0.358 0.145 0.192 0.555 0.017 0.020 0.132 0.067 0.084 

EVI -0.066 0.025 0.032 0.315 0.107 0.147 0.456 0.035 0.044 0.039 0.068 0.084 

SAVI -0.059 0.021 0.028 0.336 0.095 0.130 0.541 0.024 0.029 0.043 0.053 0.064 

XGBoost 

NDVI -0.082 0.077 0.039 0.583 0.114 0.155 0.578 0.016 0.020 0.142 0.068 0.083 

EVI 0.021 0.023 0.031 0.533 0.087 0.122 0.414 0.036 0.045 0.030 0.077 0.106 

SAVI -0.086 0.021 0.028 0.552 0.077 0.106 0.504 0.024 0.030 0.029 0.053 0.065 
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4.2. Overall and within-plot approaches   

VI values generated via overall (Table 4.2.) and within-plot (Table 4.3.) methods enabled a 

robust assessment of the most appropriate research direction for the investigation. The overall-

plot approach produced significantly greater correlation for all VIs and phenological stages 

compared to within-plot. However, even the greatest correlation (R2 0.316) proved insufficient 

for direct rice yield prediction, with almost 70% of variation unaccounted for. The reproductive 

stage was the only phenology to demonstrate any notable correlation during analysis, while 

vegetative and ripening stages proved insignificant. Minimal correlation at the vegetative stage 

could be attributed to its longer timeframe, allowing increased opportunity for value 

discrepancies (Kuenzer and Knauer, 2013). Meanwhile, the ripening stage experiences varied 

panicle growth and decaying biomass through plant maturity, likely resulting in spectral 

variations that diminish correlation performance (Sakamoto et al., 2011; Zhou et al., 2017). 

EVI at the reproductive stage displayed the greatest relationship to yield with the Random 

Forest algorithm, with R2, MAE, and RMSE of 0.316, 701.193, and 885.332, respectively.  

Overall, three algorithms generated R2 values above 0.250, two of which using EVI, the other 

with SAVI. NDVI performed worst, achieving a maximum R2 0.172. No correlative 

relationships were uncovered during within-plot analysis. Here, a substantial volume of 

harvester samples corresponded to individual VI values owing to the spatial resolution of 

Sentinel-2 data. This is  illustrated in Figure 4.1., with several GPS yield samples partnered 

with one VI pixel value. Clearly this creates ambiguity, whereby VI pixel size corresponds 

poorly to within-plot yield samples, likely producing minimal correlation. Contrastingly, the 

overall-plot approach offers a more general overview of yield and VI values, avoiding the 

inconsistency posed by varied sample values within each VI pixel. If remotely sensed data of 

a higher spatial resolution were acquired such as PlanetScope, harvester sample values would 

have been designated more spatially precise VI values, potentially offering increased precision 

via the within-plot technique (Houborg and McCabe, 2016; Houborg and McCabe, 2018).  

Resultingly, an overall-plot approach demonstrates elevated performance when assessing the 

relationship between in situ yield data and VI values. Contrastingly, within-plot yield samples 

would benefit from greater imagery resolution for correlative analysis, possibly via 

PlanetScope or a more precise airborne approach, though this is beyond the scope of the 

investigation (Houborg and McCabe, 2016; Houborg and McCabe, 2018). The generally low 

correlation for both approaches may be dependent on exclusion of other variables understood 
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to impact rice yield rates, meaning further analysis of the overall-plot approach alongside 

additional data is crucial to maximise performance. 

 

Figure 4. 1. An illustration of GPS yield samples in relation to VI pixel size, generated from Sentinel-2 data, 

demonstrating resolution discrepancy during within-plot yield prediction. 
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Table 4.2. A table displaying the performance of each individual VI and corresponding phenological stage in predicting rice yield (kg/ha) in the study area at an overall-plot 

level.  Highlighted values indicate significant results. 

 

 

 

 

Algorithm Vegetation Index (VI) 

Vegetative Reproductive Ripening 

R2 
MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 

Simple linear 

NDVI 0.006 860.723 1089.484 0.124 765.046 1022.849 0.004 872.077 1090.752 

EVI 0.016 859.927 1084.293 0.196 773.655 980.214 0.023 853.712 1080.164 

SAVI 0.004 856.972 1090.485 0.230 748.813 958.889 -0.006 867.309 1095.853 

RF 

NDVI -0.017 873.9307 1102.22 0.162 780.795 982.706 0.084 853.659 1024.847 

EVI -0.070 877.157 1107.578 0.316 701.193 885.332 0.031 861.387 1054.326 

SAVI -0.087 898.904 1116.216 0.250 757.335 946.605 0.087 835.318 1022.949 

SVR 

NDVI -0.051 927.501 1187.76 0.061 852.422 1122.835 0.028 889.455 1142.395 

EVI -0.021 925.781 1170.805 0.255 777.117 1000.037 0.047 900.203 1131.099 

SAVI -0.067 963.47 1197.453 0.122 816.097 1085.969 0.109 861.286 1093.875 

GBR 

NDVI 0.00 877.439 1092.492 0.174 749.274 993.373 0.074 844.210 1051.403 

EVI 0.029 844.518 1076.617 0.177 794.604 991.316 0.060 828.225 1059.334 

SAVI -0.019 871.212 1103.445 0.256 753.241 942.477 0.029 857.728 1077.139 

XGBoost 

NDVI -0.034 899.497 1111.312 0.172 750.473 994.549 0.102 838.105 1035.687 

EVI -0.009 862.058 1097.73 0.179 798.166 990.49 0.061 829.971 1058.726 

SAVI -0.064 883.526 1127.345 0.242 759.345 951.219 0.027 853.358 1078.222 
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Table 4. 3. A table displaying the performance of each individual VI and corresponding phenological stage in predicting rice yield (kg/ha) in the study area at a within-plot 

level.   Highlighted values indicate significant results. 

 

 

 

 

Algorithm Vegetation Index (VI) 

Vegetative Reproductive Ripening 

R2 
MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 
R2 

MAE  

( kg/ha-1) 

RMSE  

( kg/ha-1) 

Simple linear 

NDVI 0.000 750.345 1010.640 0.001 729.927 976.350 0.015 738.888 1003.466 

EVI 0.001 749.471 1009.000 0.002 729.004 975.911 0.010 740.393 1006.212 

SAVI 0.001 749.498 1009.981 0.000 729.904 976.601 0.011 739.931 1005.323 

RF 

NDVI 0.027 726.077 985.608 0.011 722.986 971.364 0.013 738.195 1004.465 

EVI 0.024 733.994 998.059 0.001 729.169 976.183 0.010 738.024 1006.244 

SAVI 0.004 745.492 1008.621 0.002 729.196 975.685 0.022 735.884 999.754 

SVR 

NDVI 0.021 733.442 999.055 0.020 738.210 997.730 0.023 734.846 1003.862 

EVI 0.020 734.421 999.116 0.006 744.748 1005.166 0.031 732.472 1000.076 

SAVI 0.002 742.216; 1008.285 0.002 746.252 1006.897 0.025 737.111 1002.864 

GBR 

NDVI 0.027 731.291 996.934 0.024 716.973 964.905 0.029 732.576 996.281 

EVI 0.032 730.642 994.099 0.004 728.116 974.931 0.023 732.626 999.381 

SAVI 0.010 743.098 1005.264 -0.011 730.724 982.022 0.025 734.039 998.305 

XGBoost 

NDVI 0.027 731.063 996.984 0.022 718.517 965.780 0.030 732.140 995.941 

EVI 0.032 731.296 994.007 -0.004 727.669 978.733 0.023 732.026 999.428 

SAVI 0.011 743.297 1004.912 -0.012 731.673 982.491 0.025 734.504 998.235 
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4.3. Cultivar model inclusion   

Additional in situ field measurements and climate variables were harnessed to improve 

correlations attained during overall-plot analysis. Rice cultivar information was utilised, owing 

to its high feature importance during prior investigations (Kuenzer and Knauer, 2013; Delerce 

et al., 2016; Zhou et al., 2017). To maximise available data and maintain robustness, an 

arbitrary count threshold of 10 yield values per cultivar was established, as per prior 

investigations (Delerce et al., 2016; Géron, 2019). Resulting cultivars were as follows: 

Fedearroz 67, Fedearroz 68, Escobal 417, Escobal 518, TRIUNFO, Orizica, and Maja 6. Figure 

4.2 visualises recorded yield counts for each cultivar. 

 

 

Inclusion of cultivar information, alongside corresponding VI values and phenological stages, 

produced some encouraging results (Table 4.4.), with multiple model performance metrics 

indicating high correlation (Alexander et al., 2015). As with overall-plot analysis, the 

reproductive phenological stage provided the strongest relationship to yield, whereby plant 

booting has previously indicated future yield capacity (Zhou et al., 2017; Wang et al., 2019a). 

Escobal 518 demonstrated the strongest relationship, accounting for the two greatest 

correlations, whereby GBR generated R2 0.901, MAE 203.853, and RMSE 347.827, while 

XGBoost produced R2 0.890, MAE 300.931, and RMSE 366.701. This establishes the capacity 

Figure 4.2. A bar plot presenting cultivar count for data used during yield prediction modelling. 
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for yield prediction with Escobal 518, whereby EVI values captured one to two months prior 

to harvest account for over 90% of data variation. Maja 6 and Fedearroz 68 also showed 

potential, garnering R2 0.853 and 0.595, respectively. Contrastingly, Escobal 417 displayed 

minimal yield relationships, while Orizica delivered reasonable correlations at vegetative (R2 

0.744) and ripening (0.577) stages, while the reproductive stage proved insignificant. 

Clearly yield prediction capacity fluctuates depending on cultivar and phenology, but 

additional data would be beneficial for providing a more detailed impression (Géron, 2019). 

However, Fedearroz 67 produced comparatively poor correlation, achieving a maximum R2 

value of 0.385 (MAE: 884.897, RMSE: 1096.000), while holding the largest data quantity of 

all cultivars examined. This emphasises that although data volume often allows greater 

accuracy, obvious discrepancy between cultivars exist.  
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Table 4.4. The correlative performance of specific rice cultivars in predicting yield in the study area, with reference to the most successful algorithms during initial 

performance analysis. Highlighted values indicate significant results. 

Cultivar Algorithm VI 

Vegetative Reproductive Ripening 

R2 
MAE 

(kg/ha-1) 

RMSE 

(kg/ha-1) 
R2 

MAE 

(kg/ha-1) 

RMSE 

(kg/ha-1) 
R2 

MAE 

(kg/ha-1) 

RMSE 

(kg/ha-1) 

Escobal 417 

XGBoost NDVI -0.024 829.884 1049.017 -0.729 1280.455 1363.441 -0.369 1080.488 1212.988 

 EVI -0.271 1061.451 1168.723 -2.495 1756.431 1938.369 -0.326 1099.681 1193.974 

 SAVI -1.143 1124.470 1517.682 -0.743 1290.904 1368.984 -0.302 1113.275 1182.857 

RF NDVI -1.020 1164.928 1501.468 -0.461 653.163 882.460 -0.360 676.384 851.360 

 EVI -0.410 658.279 867.031 -0.367 672.303 853.526 -0.280 670.218 826.044 

 SAVI -0.441 1107.406 1268.234 -0.995 1255.914 1492.131 -0.543 1179.711 1312.209 

GBR NDVI 0.072 781.285 998.681 -0.352 1128.681 1205.579 -0.270 1045.471 1168.384 

 EVI -0.333 1110.649 1197.023 -0.236 1063.556 1152.691 -0.352 1128.681 1205.579 

 SAVI -0.995 1127.036 1464.348 -0.352 1128.681 1205.579 -0.352 1128.681 1205.579 

Escobal 518 

XGBoost NDVI -0.135 946.938 1178.869 0.730 402.907 575.211 -0.908 1276.365 1528.209 

 EVI -0.906 1356.973 1527.501 0.890 300.931 366.701 -0.292 1126.041 1257.535 

 SAVI -0.016 1049.004 1115.077 0.642 641.050 662.307 0.193 792.126 994.117 

RF NDVI -0.139 1324.101 1324.303 0.417 944.893 947.651 -0.139 1324.101 1324.303 

 EVI -0.139 1324.101 1324.303 0.383 902.297 974.883 -0.139 1324.101 1324.303 

 SAVI -1.151 1816.113 1819.817 0.656 723.630 727.640 -0.139 1324.101 1324.303 

GBR NDVI -0.123 948.111 1172.638 0.606 644.954 694.197 -1.062 1346.219 1588.662 

 EVI -1.445 1525.879 1729.984 0.901 203.853 347.827 -0.078 1040.761 1148.532 

 SAVI 0.302 876.014 924.555 0.673 531.570 632.773 0.412 717.835 848.435 

Fedearroz 67 

XGBoost NDVI 0.023 1055.734 1381.237 0.164 1004.736 1277.178 0.019 1058.266; 1383.545 

 EVI -0.038 1108.979 1423.799 0.385 884.897 1096.000 -0.006 1122.860 1401.186 

 SAVI 0.017 1069.536 1385.306 0.271 936.899 1192.705 -0.024 1101.430 1413.851 

RF NDVI -0.023 950.098 1147.407 -0.245 926.594 1098.663 0.059 940.616 1100.264 

 EVI -0.168 966.825 1225.645 0.059 904.520 1100.481 -4.10 1080.465 1346.780 

 SAVI -0.201 998.848 1243.084 -0.134 864.944 1048.419 0.034 927.991 1114.776 

GBR NDVI 0.013 1065.970 1388.059 0.189 1018.002 1258.249 0.096 1013.307 1328.207 

 EVI -0.006 1080.427 1401.102 0.271 945.823 1193.097 -0.003 1083.173 1399.221 

 SAVI 0.008 1071.069 1391.500 0.211 968.793 1240.973 0.028 1059.072 1377.124 

Fedearroz 68 
XGBoost NDVI 0.004 943.843 1213.257 0.340 783.820 987.640 -2.086 1089.285 1336.346 

 EVI 0.181 880.535 1100.354 0.595 630.846 771.386 -0.046 967.813 1243.329 
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 SAVI 0.121 902.307 1139.670 0.398 773.409 943.522 0.021 930.303 1202.800 

RF NDVI 0.059 710.125 899.813 -0.473 793.213 1125.961 -0.059 761.013; 954.541 

 EVI 0.182 681.233 839.186 0.124 847.096 963.155 -0.215 954.812 1134.176 

 SAVI -0.251 811.095 1037.450 -0.016 616.180 935.218 -0.284 999.990 1165. 934 

GBR NDVI 0.331 813.682 994.038 0.358 764.253 973.966 -0.047 991.520 1243.883 

 EVI 0.227 897.286 1068.617 0.559 658.907 807.406 -0.030 972.875 1233.796 

 SAVI 0.203 880.956 1085.460 0.532 702.213 831.861 0.019 942.788 1204.019 

Maja 6 

XGBoost NDVI -0.316 636.977 720.737 -1.039 883.987 897.248 -0.119 628.202 664.657 

 EVI -0.031 632.555 637.740 -0.956 631.519 878.484 0.539 391.719 426.566 

 SAVI -0.06 883.987 897.248 0.101 594.696 595.569 0.535 428.056 428.595 

RF NDVI 0.049 936.665 945.572 0.853 152.327 182.698 0.363 769.164 773.870 

 EVI 0.086 923.217 926.965 0.609 298.072 298.096 -1.590 750.266 766.902 

 SAVI 0.234 848.510 848.554 0.736 194.268 244.731 0.342 601.143 786.510 

GBR NDVI -0.535 951.936 1044.044 -2.634 1368.670 1606.396 -4.455 1787.822 1968.254 

 EVI -2.243 1262.087 1517.552 -1.590 1183.043 1356.165 -2.065 1095.621 1475.368 

 SAVI -3.204 1291.854 1727.851 -0.675 932.308 1090.711 -4.038 1650.570 1891.523 

Orizica 

XGBoost NDVI -0.605 978.312 1067.435 -3.367 1505.253 1761.005 -5.300 1938.856 2115.145 

 EVI -3.326 1380.719 1752.603 -1.482 1180.266 1327.671 -2.420 1267.176 1558.406 

 SAVI -3.810 1423.697 1848.123 -1.269 1098.424 1269.443 -3.959 1509.949 1876.611 

RF NDVI 0.744 504.623 515.445 -3.642 2149.687 2192.742 -1.503 1426.896 1610.221 

 EVI -0.286 1078.269 1154.250 -1.404 1575.820 1578.080 -2.492 1245.300 1901.948 

 SAVI -0.082 853.423 1058.750 -1.200 1441.812 1509.482 0.577 587.900 662.267 

GBR NDVI -0.535 951.936 1044.044 -2.243 1262.087 1517.552 -4.455 1787.822 1968.254 

 EVI -2.243 1262.087 1517.552 -1.590 1183.043 1356.165 -2.065 1095.621 1475.368 

 SAVI -3.204 1291.854 1727.851 -0.675 932.308 1090.711 -4.038 1650.570 1891.523 

TRIUNFO 

XGBoost NDVI 0.266 1084.876 1226.319 -2.113 2052.034 2527.073 0.149 1187.172 1320.978 

 EVI 0.557 820.749 953.667 0.374 1015.046 1133.411 -0.363 1631.698 1672.163 

 SAVI 0.010 1260.584 1425.164 -0.034 1217.347 1456.676 -0.048 1241.695 1466.291 

RF NDVI -0.238 810.079 950.486 -3.813 1487.699 1874.303 -1.833 1156.564 1437.906 

 EVI -0.704 999.240 1216.438 0.687 397.276 521.644 -3.614 1759.769 1835.271 

 SAVI -0.233 709.679 1034.907 -1.977 989.704 1607.909 -1.394 1270.330 1441.755 

GBR NDVI 0.237 1104.279 1250.770 -1.174 1718.844 2112.193 -0.021 1314.160 1447.119 

 EVI 0.672 749.043 820.202 0.393 897.639 1115.481 -0.208 1542.953 1574.181 

 SAVI 0.051 1239.992 1395.358 -0.045 1218.553 1463.910 -0.106 1358.680 1506.243 
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4.4.  In situ field measurements and climate variables  

Building upon performance improvements offered by cultivar specification, further in situ field 

measurements and climate variables were explored. Following the same multicollinearity and 

modelling methods previously detailed, additional data was utilised for improved prediction 

performance and feature importance analysis. Figure 4.3. presents a Pearson’s coefficient 

heatmap, demonstrating collinearity between variables. Here, stronger collinearity between 

remotely sensed metrics is present, most prominently between shared phenological stages of 

NDVI, EVI, and SAVI values. Climate variables and in situ field measurements demonstrate 

lower collinearity, though still notable between solar radiation, drought days, and relative 

humidity, all linking to temperature variations.  

 

 

The VIF was also employed to identify non-linear collinearity (Géron, 2019; Deisenroth et al., 

2020). Following this, resulting variables were modelled to establish the prediction 

performance for each cultivar with the additional variables. Table 4.5. presents the most 

encouraging results for each rice cultivar. 

Figure 4.3. A heatmap presenting Pearson’s correlation analysis of all variables used during rice yield 

prediction modelling.  
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Two variables, namely the seedling period and number of drought days per month, both 

strengthened yield prediction performance, though not in all circumstances. Additionally, the 

inclusion of VI values at specific phenological stages appeared a crucial component for every 

model tested, demonstrating the importance of EO during rice yield prediction. The EVI and 

reproductive phenology proved dominant during analysis, included in most cultivar models, 

demonstrating reproductive booting as a strong determinant of yield (Zhou et al., 2017). The 

EVI vegetative phenology displayed some success, specifically for the Orizca cultivar, 

achieving an R2 of 0.744. Conversely, ripening failed to attain the highest performance in any 

model, likely due to varied panicle growth and decaying biomass following plant maturity, 

causing unpredictable spectral variations (Sakamoto et al., 2011; Zhou et al., 2017). Escobal 

518 proved the most encouraging cultivar for yield prediction, attaining a performance of  

0.949 (R2), 191.059 (MAE), and 250.934 (RMSE), with XGBoost. This was achieved with the 

inclusion of both seedling and drought variables, alongside EVI values at the reproductive 

stage. Therefore, the modelling process accounted for 95% of yield variation for Escobal 518 

in the study area. 

The majority of in situ data and climate variables demonstrated substantial collinearity, 

deeming them unsuitable for model inclusion to avoid overfitting (Géron, 2019; Deisenroth et 

al., 2020). This can be interpreted in different ways; data could have been of poor quality, 

though retrieval from multiple sources weakens this argument. Alternatively, unlike EO data, 

climate variables were not divided phonologically, instead encompassing entire growing 

periods. Judging by the improvements that VI division brought to performance, the same pre-

processing to climate variables may have had a similarly positive impact (Delerce et al., 2016). 

Even so, the addition of these variables was clearly beneficial for some cultivars, providing 

interesting connotations to the investigation. 

Where the inclusion of additional data presented no performance improvements, values 

previously derived from VIs and phenological division were used. Maja 6’s R2 value of 0.853 

was generated using only NDVI values at the reproductive stage, with no benefit from further 

variables. This scenario could be due to the lower value count for some cultivars, providing 

less information for robust modelling, or was simply less impacted by other variables (Delerce 

et al., 2016). Furthermore, the research covered a relatively short period, approximately 5 

harvests, meaning climate variables could have had limited time to demonstrate noticeable 

influence. This is consequential considering the influence that the warmer El Niño and cooler 

La Niña events exert on Colombian rice production, possibly causing disparities within the 
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independent variables (Esquivel et al., 2018; Cai et al., 2020). For example, El Niño flooding 

between 2016 and 2017 heavily impacted Colombian agriculture, which may have influenced 

modelling performance due to limited data availability (Cai et al., 2020).  
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Table 4. 5. Using algorithms harnessed during specific cultivar analysis, maximum performance metrics of each cultivar using additional climate data and in situ field 

measurements is displayed to explore yield influences. Results are highlighted where improvements have been established with the addition of these variables. 

Cultivar Variables Algorithm R2 
MAE 

(kg/ha-1) 

RMSE 

(kg/ha-1) 

Escobal 417 

EVI_veg, drought days, seedling stage RF -0.154 921.971 1113.821 

NDVI veg XGBoost -0.024 829.884 1049.017 

EVI_veg, drought days, seedling stage GBR -0.279 904.893 1172.329 

Escobal 518 

NDVI_repro, drought days, seedling stage RF 0.914 251.880 324.922 

EVI_repro, drought days, seedling stage XGBoost 0.949 191.059 250.934 

EVI_repro gbr 0.901 203.853 347.827 

Fedearroz 67 
SAVI_repro, drought days, seedling stage 

RF 0.458 857.075 1029.052 

XGBoost 0.427 875.655 1057.166 

EVI_repro, frought days, seedling GBR 0.426 910.477 1098.223 

Fedearroz 68 

SAVI_repro, drought days, seedling stage RF 0.551 690.969 814.171 

EVI_repro, drought days, seedling stage XGBoost 0.556 668.298 810.161 

SAVI_repro, drought days, seedling stage GBR 0.468 766.418 930.124 

Maja 6 

NDVI_repro RF 0.853 152.327 182.698 

EVI veg XGBoost -0.031 632.555 637.740 

EVI_repro, drought, seedling GBR 0.118 430.929 590.034 

Orizica 

EVI_veg RF 0.744 504.623 515.445 

SAVI_repro, drought XGBoost 0.124 560.908 587.967 

SAVI repro GBR -0.675 932.308 1090.711 

TRIUNFO 

EVI_repro RF 0.687 397.276 521.644 

EVI_repro, drought, seedling XGBoost 0.697 761.188 853.997 

EVI_veg GBR 0.672 749.043 820.202 
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To better understand the impact of each variable on yield prediction modelling, Scikit-Learn’s 

feature importance function was implemented for the best performing cultivars (Pedregosa et 

al., 2011). Figure 4.4. presents resulting analysis, visualising variable influence on the best 

performing models. While EO metrics appeared dominant throughout,  cultivars evidently react 

differently to drought and seedling period variables. This may suggest such analysis can be 

used for managerial decision-making, with cultivars less impacted by climate variables more 

robust to environmental fluctuations (Delerce et al., 2016). Notably, more extreme 

temperatures and lower precipitation can prolong rice seedling stage (Delerce et al., 2016; 

Quevedo et al., 2020), in turn reducing yield volume (Gan et al., 1992). Therefore, Escobal 

518’s reduced seedling period influence compared to Triunfo indicates it is more appropraite 

as climate change continues to impact Colombia. Moreover, Fedearroz 67 and Fedearrox 68 

appeared to react comparably to variables, though Fedearroz 67 displayed slightly more 

influence from reproductive EVI values. 

(a) (b) 

(c) (d) 

Figure 4.4. Feature importance of variables for best performing species: (a) Escobal 518 (XGBoost); (b) 

Fedearroz 68 (XGBoost); (c) Triunfo (XGBoost); (d) Fedearroz 67 (XGBoost). 
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Figure 4.5. visualises the most encouraging model performances influenced by EO metrics, 

drought information, and sowing periods. Here predicted yield values are plotted against actual 

yield data, presenting cultivar specific trends. Though Escobal 518 achieved the highest 

performance, the test set volume is minimal compared to Fedearroz 67 and Fedearroz 68. This 

perhaps influences performance, highlighting the need for further data to reinforce 

investigative findings. 

  

(d) (c) 

(b) (a) 

Figure 4.5. Scatter plots displaying the predicted yield vs actual yield values from the highest performing 

models using EO metrics, climate variables, and in situ field measurements, specifically: (a) Escobal 518 

(XGBoost); (b) Fedearroz 68 (XGBoost); (c) Triunfo (XGBoost); (d) Fedearroz 67 (XGBoost). 
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Chapter 4 

5.0. Discussion  

5.1. Cloud coverage mitigation 

Considering the encouraging correlation and minimal error detected at the reproductive 

phenology, opportunity for cloud cover mitigation of optical satellite coverage approximately 

one to two months prior to harvest exists. Additionally, the vegetative stage generated the 

highest R2 value during analysis (R2 0.583), albeit with larger error fluctuations between 

models. Similar to Filgueiras et al.’s (2019) investigation, the inclusion of the NRPB alongside 

VV improved correlations, whereby the ratio of VV and VH allows greater model 

generalization (Vreugdenhil et al., 2018), though equivalent levels of correlation were not 

found.  

The poor relationship at the ripening stage appears significant; Figure 5.1. displays the typical 

appearance of rice at each phenological stage, highlighting a clear increase in yellowing during 

maturity. Past research has demonstrated VI value saturation following plant yellowing, 

witnessed during flowering and ripening, which is linked to declining chlorophyll content 

(Shen et al., 2010, Haagsma, 2015). Here, increasing yellowness in conjunction with reduced 

biomass as leaves decay cause lower VI values (Kuenzer and Knauer, 2013; Mosleh et al., 

2015; Ariza, 2019). Yet as backscatter values are concerned with plant canopy structure and 

moisture content, this variation shown in the optical wavelengths would not be replicated, 

leading to a diminished correlation.  

 

(a) (b) (c) 

Figure 5.1. A representation of typical rice appearance at the (a) vegetative, (b) reproductive, and (c) ripening 

stages of phenological development. Specific focus is given to largely green canopies at both the vegetative and 

reproductive stages, followed by significant yellowing upon maturity. Modified from Yang et al. (2016) and He et 

al. (2018). 
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The average values of each phenological stage for the NDVI and VV polarisation reinforce this 

(Figure 5.2.). Here, a steep decline at the ripening stage associated with NDVI is not replicated 

to the same extent by VV, which instead displays a value only slightly less than the preceding 

reproductive stage. Prior investigations support this synopsis; Zhou et al. (2017) determined 

varied panicle growth and ripening stages can cause difficulties in identifying rice yield due to 

introduced spectral variation from decaying biomass, while Sakamoto et al. (2011) concluded 

that colour variation at later phonologies reduced rice identification and yield prediction 

accuracy. As backscatter values are dependent upon canopy structure and plant moisture 

content, its unfeasible to apply this cloud mitigation method as plant maturity progresses, and 

explains the low correlation at the ripening stage. However, Vreugdenhil et al. (2018) 

emphasised significant backscatter sensitivity to leaf water content, meaning leaf decay 

associated with ripening may explain the slight backscatter reduction observed (Figure 5.2.). 

Overall, a more precise assessment of phenology at the vegetative stage appears the most 

encouraging route to improving cloud mitigation. 

(a) (b) 

Figure 5.2. A plot displaying the average value of (a) NDVI and (b) VV backscatter at each phenological 

stage from cloud mitigation data. Peak values are reached for both at the reproductive stage (0.85 and -14.7 

respectively). Both variables appear to mimic each other through the vegetative and reproduction stages, 

though both values recede from their peak during ripening, VV backscatter is less impacted compared to the 

change from vegetative to reproductive, while the NDVI declines to a greater extent. 
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Sentinel-1’s C-band does not have the capacity to interact with rice in the same way as the 

more penetrative L-band, meaning there is significant interaction within the plant canopy. This 

further supports the variations in backscatter caused by canopy structural change during 

vegetative, while the spectral change associated with ripening was inadequately recorded with 

SAR C-band (Figure 5.2.). The minimal response to soil demonstrates the benefits of more in-

depth phenology spitting, as dialectic properties dictated by moisture content dominate 

backscatter (Bousbih et al., 2017). In much the same way, a proportion of recorded vegetative 

values will be influenced by the dialectic constant during the early stages of rice emergence 

(Bousbih et al., 2017). By removing this period from analysis, correlations may strengthen. 

Duan et al. (2019) detailed a preference for more precise phenology division while 

investigating rice yield prediction in Hubei Province, China. Here, an uneven presence of 

panicles and leaves caused a diverse spectral response, leading to diminished crop parameter 

estimations (Duan et al., 2019). The vegetative stage generally covers a period double that of 

reproductive and ripening stages (Kuenzer and Knauer, 2013), yet provided the highest 

performance throughout cloud mitigation modelling (R2 0.583). Following past research, 

significant fluctuations in both reflectance and backscatter are therefore likely at this stage due 

to the extended period of plant development, meaning more precise phenological splitting to 

include germination, tillering, and stem elongation may diminish the high levels of error, 

improving cloud mitigation capabilities (Zheng et al., 2016; Filgueiras et al., 2019; Zhang et 

al., 2019b). Tillering and stem elongation stages are less impacted by soil moisture and 

corresponding dielectric properties, as the closed canopy means minimal soil is visible to 

influence backscatter (Bousbih et al., 2017; Filgueiras et al., 2019).  

Zhang et al. (2019b) noted the strong yield prediction capacity during stem elongation within 

the vegetative phenology, alongside booting at the reproductive stage. This coincides with 

encouraging correlations found during the investigation, meaning further phenological splitting 

has potential to develop cloud mitigation at growth stages crucial for yield prediction (Zhang 

et al., 2019b). By focusing on more precise phenology division, particularly at the vegetative 

stage following canopy closure, error may be minimised by ensuring all values are retrieved at 

a period of closed canopy with little influence from soil dielectric properties (Filgueiras et al., 

2019; Zhang et al., 2019b). This is valuable for maximising the available optical satellite data 

at a key growth period for yield prediction (Filgueiras et al., 2019; Zhang et al., 2019b). 

Successful implementation and extrapolation of this approach elsewhere in Colombia and 
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beyond could therefore contribute to strengthening food security (Castro-Llanos et al., 2019; 

Jiménez et al., 2019; Weiss et al., 2020).  

Due to the influence of these factors on past investigations, accounting for rice cultivar and 

season has potential to improve cloud mitigation correlations owing to associated spectral 

variations (Kuenzer and Knauer, 2013; Delerce et al., 2016; Zhou et al., 2017). However, the 

additional data preparation and complications involved may prove difficult and largely 

unrealistic for wider extrapolation.  

5.2. Overall and Within-Plot  

Determining the most appropriate plot approach was important in optimising yield prediction 

within the study area. The poor performance generated via the within-plot approach was likely 

related to insufficient Sentinel-2 spatial resolution. Further, GPS yield sampling used during 

within-plot analysis held notable limitations, whereby significant value discrepancy within VI 

pixels impacted modelling (Leroux et al., 2018). This inconsistency can result from various 

scenarios; sample values are highly dependent on harvester operator skill, whereby vehicle 

speed, cutting head angle, and presence of foreign materials can all influence recorded yield 

data (Blackmore, 1999; Arslan and Colvin, 2002; Leroux et al., 2018). An overall-plot 

approach proved a successful alternative, albeit with disadvantages. For example, lower data 

volume provided decreased performance certainty and modelling compared to the abundant 

GPS sample points (Géron, 2019). In response, cultivar values below a count of 10 were 

removed to mitigate fluctuations associated with limited data (Delerce et al., 2016; Géron, 

2019). 

Satellite data with increased spatial resolution has been harnessed during previous 

investigations to achieve improved yield prediction performance. Noureldin et al. (2013) 

acquired 10 m spatial resolution SPOT data, where VIs harnessing red and near-infrared 

spectral reflectance consistently achieved R2 values above 0.80. Additionally, the application 

of 3 m spatial resolution Quickbird data has been used to generate VIs for grain yield prediction 

using GPS yield samples, whereby Yang et al. (2006) established a maximum R2 value of 0.81 

through SLR. However, these approaches were unsatisfactory for the present investigation; 

Quickbird is no longer operational, while SPOT data is commercially distributed, diminishing 

open-accessibility. Additionally, these approaches centred on an individual plot of one cultivar 

over a single harvest, while the present investigation examined multiple rice varieties and 

unstructured growing seasons across several plots. However, the development of satellite 

constellations such as those provided by Planet Labs may combat the limited spatial-temporal 

https://www.sciencedirect.com/science/article/pii/S2211912419300070#!
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frequency of Sentinel-2 data for more precise phenological division (Houborg and McCabe, 

2016; Houborg and McCabe, 2018). Though sensor inconsistencies within the constellations 

relating to spectral bandwidth and radiometric quality, alongside their commercial nature, 

demonstrate this approach is constrained (Houborg and McCabe, 2018). 

Alternatively, the opportunity to further develop within-plot research is presented by Wang et 

al. (2019b) in Jiangsu Province, China, which experiences a humid subtropical monsoon 

climate comparable to the study area. Encouraging results were produced with a SAR simple 

difference (SSD) index, which harnessed the variation between VH at the end of rice tillering 

and grain filling phenological stages, achieving an RMSE of 740 kg/ha-1 (Wang et al., 2019b), 

an improvement on the highest RMSE from overall-plot analysis (885 kg/ha-1). Thus, 

exploring within-plot yield prediction with Sentinel-1 data is possible, bypassing unfavourable 

weather conditions, while remaining freely accessible. The implementation of Sentinel-2 can 

still be considered an effective option given the circumstances, albeit through an overall-plot 

approach. Moreover, Sentinel-2 data allows for possible extrapolation to other suitable rice 

growing areas in Colombia and beyond given its open-source accessibility, as detailed by 

Castro-Llanos et al. (2019). However, including further climate variables and in situ field 

measurements proved critical to further optimise yield prediction performance (Delerce et al., 

2016). 

5.3. Enhancing model yield prediction capacity  

Following past research (Delerce et al., 2016), division of overall-plot data by rice cultivar 

proved an interesting development, achieving higher prediction capacity. Indeed, the maximum 

overall-plot performance of R2 0.316 was elevated following cultivar specification, with 

notably strong collinearity displayed by Escobal 518 (R2 0.901), Maja 6 (R2 0.853), Orizca (R2 

0.744), and Triunfo (R2 0.687). Likewise, 29 of the 63 generated cultivar models achieved 

higher than the best overall-plot performance, further demonstrating the effectiveness of 

cultivar division during prediction modelling. Results suggest some cultivars are more 

responsive to modelling and specific climate variables, a factor to be considered by farmers for 

optimum yield production as the climate alters (Delerce et al., 2016). Similar scenarios have 

been observed in previous research; Delerce et al.’s (2016) investigation in Colombia 

uncovered that rice cultivar had the greatest influence on yield rates, alongside weather 

variables at the reproductive stage. Delerce et al. (2016) revealed significant yield variation 

between cultivars during specific climate scenarios, thereby allowing cultivar 

recommendations for farmers where such climates were anticipated. Moreover, alternating 
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yield rates based upon climate variables allowed farmers to adequately adapt to the projected 

climate change in the region, whereby cultivars more suitable to decreasing precipitation rates 

and increasing temperatures were identified (Shah et al., 2011; Delerce et al., 2016).  

Following Delerce et al.’s (2016) trajectory, the present investigation went on to assess a range 

of previously detailed climate variables and in situ field measurements to optimise cultivar-

specific modelling. Again, performance variations between cultivars was evident, with some 

showing no improvements with additional climate variables. However, seedling period and the 

number of drought days both demonstrated performance improvements for some cultivars, 

while other variables displayed excessive collinearity to the dependent variable. For example, 

the addition of these variables alongside reproductive EVI values for Escobal 517 produced an 

exceptional R2 of 0.949, accounting for 95% of rice yield variation. Further, Escobal 518’s 

reduced seedling period influence compared to Triunfo following feature importance analysis 

suggests it is a more appropraite cultivar as climate change impacts Colombia, providing useful 

advice for regional decision making. This demonstrates the value in incorporating a range of 

data sources, including EO metrics, climate variables, and in situ field measurements during 

rice yield investigations. Delerce et al. (2016) also demonstrated that cultivar, seedling, and 

drought influence benefited rice yield prediction, yet they achieved a maximum R2 of 0.502 at 

Saldaña, Colombia, demonstrating the importance of EO data inclusion during such research.  

The obvious benefits seedling and drought information bring is significant in the context of a 

changing climate and food security. The influence of drought in the study area has substantial 

literary support; Heinemann et al. (2015) studied drought impacts on upland rice production in 

neighbouring Brazil, whereby 44% of cultivated rice was most impacted by drought, 

particularly during the reproductive period. Moreover, Heinemann and Sentelhas (2011) 

concluded that increased drought levels were the dominant abiotic stress upon upland rice 

production during prior research. Similarly, Delerce et al. (2016) demonstrated that rainfall 

frequency appeared the most important feature for yield prediction for certain cultivars, notably 

in the vegetative stage. To combat the negative climatic influence on rice yield, Heienemann 

et al. (2015) recommended an adaptation approach, one option being selection of the most 

resilient cultivars for maximum production, a method also proposed by Delerce et al. (2016). 

Owing to the influence of drought, a similar strategy could be implemented at Hacienda El 

Escobal, whereby cultivars less affected by the drought variable may be more suitable for future 

cultivation to minimise food insecurity. Through feature importance analysis, Escobal 518 and 

Triunfo indicated less influence from drought compared to sowing period, while both 
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Fedearroz 67 and Fedearroz 68 exhibited the opposite relationship, with substantial drought-

based impact. One could therefore recommend Escobal 518 and Triunfo as suitable cultivars 

for future production, owing to their reasonable prediction accuracy and reduced impact from 

lower precipitation rates. 

The influence of seedling period during modelling is also of note following similar findings in 

Colombia (Delerce et al., 2016; Quevedo-Amaya et al., 2020). Indeed, extreme temperatures 

and low precipitation rates can prolong the seedling stage of rice (Delerce et al., 2016; Quevedo 

et al., 2020), which in turn is linked to reduced yield capacity (Gan et al., 1992). During Delerce 

et al.’s (2016) investigation regarding the most suitable sowing periods, they determined that 

rice sown throughout the year encountered varying weather events, with crops planted in April 

and May found to be beneficial for maximising yield (Delerce et al., 2016). Consequently, the 

influence of sowing period on the present investigation likely relates to the climatic variations 

noted by Delerce et al. (2016), whereby certain months are more suitable for rice sowing than 

others. Gan et al. (1992) reinforces this, arguing that shorter sowing periods typically 

correspond to improved yield rates, implying that minimising this growth stage is 

advantageous. Quevedo-Amaya et al. (2020) found a similar influence during research into rice 

yield optimisation in a region approximately 20km from Hacienda El Escobal. Concentrating 

on the Fedearroz 68 cultivar throughout 2017,  Quevedo-Amaya et al. (2020) concluded that 

sowing date selection had no impact on production costs yet can increase profitability by up to 

26% due to influence on yield. Correspondingly, the present investigation found the inclusion 

of sowing period also improved yield prediction accuracy for the Fedearroz 68 cultivar, though 

drought offered greater influence. This reinforces findings by Delerece et al (2016) and 

Quevedo-Amaya et al. (2020) regarding sowing impact on regional rice production, which 

appears to be dictated by annual climate variations. Owing to fluctuations and extreme events 

following climate change, one can expect the significance of sowing period to further increase, 

reinforcing its importance during prediction modelling (Delerce et al., 2016; Quevedo-Amaya 

et al., 2020). However, other influencing factors exist; mechanical characteristics of the 

seedbed, such as tillage practices, also contribute to the seedling stage (Blacklow, 1972). 

Impacts of the warmer El Niño and cooler La Niña events on Colombian rice production should 

also be considered; the former tends to produce negative precipitation anomalies, while the 

latter sees positive precipitation anomalies (Poveda et al., 2001; Esquivel et al., 2018; Cai et 

al., 2020). The 2016-2017 El Niño flooding event is evidence of this; damage to Colombian 

agriculture output following crop destruction may have skewed modelling due to the lack of 
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years evaluated (Cai et al., 2020). As climate change progresses, so too will the intensity of 

extreme weather events,  strengthening the need for maximising the data volume for robust 

analysis (Esquivel et al., 2018; Quevedo Amaya et al., 2019; Cai et al., 2020). 

The phenological splitting of climate data, as applied to EO metrics, may have resulted in 

further correlations and more vigorous results. Climate data during the reproductive stage has 

shown significance to yield prediction in prior research, (Delerce et al., 2016; Iizumi et al., 

2018; Das et al., 2020), much like that observed with EO metrics in the current investigation. 

Therefore, splitting climate variables at phenological stages could prove beneficial instead of 

analysing the entire growing period (Delerce et al., 2016). It can be theorised that the 

dominance of EO metrics in the best performing models could thus be related to their 

phenological splitting. In contrast, climate variables simply covered the whole growth period, 

perhaps weakening their correlation. However, van Oort et al. (2011) discussed the sensitivity 

of yield prediction models to accurately determine phenological stages, meaning further 

precision should be approached cautiously and is beyond the scope of the present investigation.  

5.4. Extrapolation  

Extrapolation of methods should be explored as climate change persists in tropical regions, 

risking food security. The presented cloud mitigation technique offers a rudimentary path for 

wider extrapolation to regions impacted by optical cloud masking due to the open-accessibility 

of Sentinel-1 and Sentinel-2 data. Furthermore, while rice cultivation is widespread in the 

tropics, potential exists for extrapolation to alternative crops. Filgueiras et al. (2019) 

demonstrated this, using a similar technique for maize and soybean monitoring in Brazil. Yet 

the maximum performance attained in the present investigation (R2 0.583, MAE 0.114, RMSE 

0.155) requires additional development prior to further application to reduce uncertainty. This 

investigation thoroughly explored options and recommends a more precise division of 

phenology at the vegetative stage to achieve this, reducing the large variation in plant structure 

and dielectric constant currently observed prior to canopy closure at the vegetative stage. By 

focussing analysis following canopy closure during maximum tillering and stem elongation 

stages, the high error rates will likely be mitigated (Filgueiras et al., 2019; Zhang et al., 2019b), 

allowing extrapolation of this technique to fill optical data gaps in the wider tropics. 

Colombia is climatically diverse, offering difficulties in national-scale yield prediction 

extrapolation However, the robustness of the present investigation is supported by prior 

research within close proximity and elevation to the study area, whereby cultivar, seedling 

period, and drought have all been confirmed as significant factors in rice yield forecasting in 
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Tolima (Delerce et al., 2016; Quevedo et al., 2020). This strengthens the investigative findings 

and suggests potential for model extrapolation at least within Tolima department, this being 

the greatest rice producing department in Colombia (Castilla-Lozano et al., 2011; Delerce et 

al., 2016). Exploring this further, Castro-Llanos et al.’s (2019) research into the impact of 

climate change on Colombia’s cultivated rice is significant. As the present study area is focused 

upon agricultural land situated at a suitable elevation for continued rice cultivation by 2050, 

this investigation’s yield prediction methodology has potential to be extrapolated to the 

remaining 40% of suitable agricultural land in Colombia due to their shared characteristics 

(Castro-Llanos et al., 2019). Specifically, this land has sufficient elevation to avoid the impacts 

of rising temperatures and diminishing water availability (Castro-Llanos et al., 2019). 

Therefore, the method proposed in this investigation may prove a crucial part in maintaining 

future national food security. Feature importance analysis of specific cultivars holds additional 

value for extrapolation; one could recommend Escobal 518 and Fedearroz 68 as suitable 

cultivars for projected climate changes in the future, owing to their reasonable prediction 

accuracy and lessened impact from both drought and seedling period. Communicating such 

findings to the Colombian government and farmers through a set of guidelines could therefore 

be a valuable approach to extrapolating the proposed methods for the benefit of both regional 

and national food security (Jiménez et al., 2019). 

5.5. Research limitations  

Several limitations likely incurred influence on results. Data collection and modelling 

preparation is one example; during data quality assurance, imputation was harnessed to fill 

missing data values to maximise data volume during modelling. The imputation of average 

values introduced synthetic data not entirely representative of reality, bringing a degree of 

uncertainty (Géron, 2019; Deisenroth et al., 2020). This imputation, in conjunction with 

random error associated with instrument measurement limitations, contributes to error 

propagation, bringing uncertainty to statistical analysis (Deisenroth et al., 2020). Further 

inaccuracy likely arises from field measurements following human error; variables such as 

sowing and emergence dates relied upon human monitoring to determine their occurrence, 

which was likely not universal for all plants within a plot. Similarly, harvesting often happened 

over several days, yet was recorded within the dataset as the last day of harvesting for the whole 

plot. Such error seems unavoidable through overall-plot analysis, though alternative estimation 

methods not reliant on humans could replace this (Delerce et al., 2016).  

https://www.sciencedirect.com/science/article/pii/S2211912419300070#!
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Furthermore, the data availability covered approximately five harvests per plot. For a more 

robust analysis, it would be beneficial to cover a greater timeframe, especially considering the 

unpredictability brought by El Niño and La Niña weather events, and their resulting impact on 

Colombian rice production (Esquivel et al., 2018; Cai et al., 2020). This reinforces the 

importance of farms maintaining thorough and accurate agricultural datasets to maximise the 

PA modelling capabilities (Delerce et al., 2016). Specifically, a greater data volume across a 

wider period would have assisted in differentiating cultivar performance and overall prediction 

to a higher degree. As argued by Halevy et al. (2009), the volume of useful data is more 

valuable for maximising model performance than the complexity of the algorithm used.  

The limitations of climate variables is also worth exploring; though the influence of seedling 

period and drought are of interest given their literary backing, evidence suggests that further 

performance improvements are likely if climate data were divided by phenology, instead of 

encompassing the entire growing period (Fageria, 2007; Heinemann et al., 2015; Delerce et al., 

2016). Using just remotely sensed data, the present investigation found that the reproductive 

stage is most correlative to yield values, therefore rice yield can be predicted to the greatest 

accuracy approximately 1 to 2 months prior to harvest. If climate variables were to be divided 

in the same manner, model robustness and performance would likely increase, alongside the 

ability to identify the most suitable phenology with all variables (Fageira, 2007; Heinemann et 

al., 2015; Delerce et al., 2016). However, Meteoblue was the only available source collating 

daily climate data, while weather stations surrounding the study area supplied monthly 

information, lessening the opportunity for phenology division. Thus, supplementary daily 

climate data would benefit the investigation (Fageira, 2007; Heinemann et al., 2015). Such an 

approach is supported by past research; Heinemann et al. (2015) found drought at the 

reproductive phenology the leading factor impacting rice yield in neighbouring Brazil. Here, 

Heienemann et al. (2015) stated the need for phenology splitting when examining climate 

variable’s impact on growth, with specific mention of drought, a significant influence on yield 

in this investigation. Indeed, Fageira (2007), also noted that abiotic factors such as radiation, 

temperature, and drought are ultimately most impactful to rice yield during the vegetative and 

reproductive stages, suggesting that results in the present research could be further optimised 

through phenological division.  
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Chapter 5 

6.0. Conclusions 

6.1. Cloud mitigation and rice yield prediction 

Optical satellite data is clearly a valuable component in tropical PA, but availability can be 

limited due to persistent cloud coverage. Following extreme climate projections and concerns 

surrounding regional food security, it is essential that these information gaps are filled with 

accurate data. During this investigation, cloud-penetrating Sentinel-1 metrics, specifically VV, 

VH, and NRPB, were modelled alongside NDVI, EVI, and SAVI generated from optical 

Sentinel-2 data. Metrics were divided into phenology due to evidence of varied results from 

these periods (Filgueiras et al., 2019, Zhang et al., 2019b). Correlations for cloud mitigation 

proved encouraging at reproductive and vegetative stages (R2 0.578 and 0.583, respectively) 

through machine learning techniques, using NDVI, VV, and NRPB metrics. Though these were 

not sufficient to mitigate regional cloud cover in a robust manner, findings allowed exploration 

for further development. Namely, elevated error rates at the vegetative stage resulted from 

substantial plant structural changes during this growth period, alongside varied influence of 

dielectric properties during open and closed canopy coverage (Filgueiras et al., 2019; Zhang et 

al., 2019b). Resultingly, this investigation proposes that more precise phenology division at the 

vegetative stage, specifically during maximum tillering and stem elongation, may reduce error 

fluctuations and improve cloud mitigation (Filgueiras et al., 2019, Zhang et al., 2019b). Here, 

the impact of soil moisture and corresponding dielectric properties has little influence on 

backscatter values, as the closed canopy reduces soil exposure (Bousbih et al., 2017; Filgueiras 

et al., 2019). 

Additionally, rice yield prediction was explored through machine learning, harnessing EO 

metrics, climate variables, and in situ field measurements. Effective yield prediction within the 

tropics is an important research avenue for regional food security, following Castro Llanos et 

al.’s (2019) investigation, which established only 40% of current rice plots in Colombia will 

be appropriate for production by 2050. The current study area has sufficient elevation to be 

classified as suitable, thus establishing a robust prediction model in Hacienda El Escobal is 

crucial for food security and extrapolation to wider areas. Further, the ability to predict yield 

rates several months in advance can prove paramount to meet demands of both regional farmers 

and national food security (Noureldin et al., 2013). 



71 
 

Findings demonstrated an overall-plot approach had higher yield prediction capabilities 

compared to the use of GPS yield samples using VI values, likely due to Sentinel-2’s spatial 

resolution. However, maximum performance of R2 0.316 at the reproductive stage suggests 

further variables were required to improve prediction capabilities. Following prior research 

(Delerce et al. 2016), accounting for different cultivars improved performance metrics 

dramatically; notably strong collinearity was displayed by Escobal 518 (R2 0.901), Maja 6 (R2 

0.853), Orizca (R2 0.744), and Triunfo (R2 0.687). Reproductive stage EVI values proved most 

advantageous to modelling, whereby plant booting has previously proven a strong indicator of 

rice yield (Zhou et al., 2017; Wang et al., 2019a). Additionally, the inclusion of climate 

variables and in situ field measurements reinforced prediction capabilities in some 

circumstances, including Escobal 518 (R2 0.949), Triunfo (R2 0.697), and Fedearroz 68 (R2 

0.551), whereby reproductive stage EVI, drought information, and seedling period proved most 

impactful. 

Feature importance analysis allowed for exploration of variables impact, where the influence 

of drought and seedling data corresponded to previous investigations within proximity to the 

study area, strengthening obtained results (Delerce et al., 2016; Quevedo-Amaya et al., 2020). 

This allowed identification of cultivars more resilient to projected climate scenarios, which is 

important information for managerial decision-making in the region. For example, Escobal 

518’s reduced seedling period influence compared to Triunfo suggests it is a more appropraite 

cultivar as climate change impacts Colombia, whereby more extreme temperatures and lower 

precipitation can prolong the rice seedling stage (Delerce et al., 2016; Quevedo et al., 2020), 

in turn reducing yield volume (Gan et al., 1992). However, the dominance of EO metrics during 

all feature importance analysis suggests a more precise phenology division for climate 

variables could uncover supplementary correlations. 

The combination of satellite-borne rice yield prediction and cloud mitigation determined during 

this investigation provides valuable results to ensure regional food security, which would 

benefit from further exploration. These strategies are an essential component to  strengthen rice 

producing regions in Colombia and surrounding tropical areas, especially with the onset of 

increasing climate extremes (Castro-Llanos et al., 2019; Weiss et al., 2020). Future avenues of 

research are therefore proposed. 

6.2. Future Research Avenues  

More precise phenological splitting in all aspects of the investigation, including cloud cover 

mitigation and climate variables during yield prediction, would positively influence the results. 
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Regarding cloud mitigation, both the findings and wider literature suggest the division of the 

vegetative stage into more precise periods may improve performance from R2 0.583, while 

reducing error rates (Bousbih et al., 2017; Filgueiras et al., 2019; Zhang et al., 2019b). 

Currently, the vegetative phenology experiences large-scale structural change from initial 

emergence to full stem elongation, during which the canopy is both open and closed. Resulting 

backscatter demonstrates strong fluctuations due to the changing plant architecture and 

dielectric properties from soil moisture, reflecting the high error rates. By focussing on 

maximum tillering and stem elongation, soil moisture will likely have a lessened impact on 

backscatter values due to canopy closure (Filgueiras et al., 2019; Zhang et al., 2019b). 

Therefore, more precise division of the vegetative stage could enhance cloud mitigation results 

above R2 0.583, enabling extrapolation to other areas of Colombia and other tropical regions, 

where filling missing data values is crucial (Castro-Llanos et al., 2019; Jiménez et al., 2019; 

Weiss et al., 2020). Such precision was beyond the scope of this investigation, though the 

introduction and continued development of satellite constellations such as those provided by 

Planet Labs may combat the somewhat insufficient spatial temporal frequency in the future 

(Houborg and McCabe, 2016; Houborg and McCabe, 2018).  

A similar direction should be explored during rice yield prediction, where division of climate 

variables into phenological stages to match EO data could improve results. This is 

demonstrated through feature importance analysis, which clearly presents EO metrics as the 

dominant predictor variable for all models. Moreover, drought and seedling variables alongside 

remotely sensed metrics improve yield prediction in most circumstances, achieving a 

maximum R2 value of 0.949. EO metrics show yield forecasting is possible one to two months 

prior to harvest with EVI data during the reproductive period, garnering a maximum R2 of 

0.901. By including climate variables also divided by phenology, prediction accuracy will 

likely be strengthened, with added capacity to pinpoint the best stage of plant development for 

yield prediction (Fageira, 2007; Heinemann et al., 2015, Delerce et al., 2016). This direction is 

supported by prior investigations (Fageira, 2007; Heinemann et al., 2015, Delerce et al., 2016; 

Quevedo Amaya et al., 2019), whereby the combination of both remotely sensed and climate 

variables split by phenology would allow more robust identification of specific time periods 

best suited for yield prediction.  

Extrapolation of methods for use across a wider area, alongside development of  a user-focused 

design for farmers, could prove an efficient path for local-level adoption and impact. Sotelo et 

al. (2020) curated an extensive, user-focused climate application service for rice and maize 

https://www.sciencedirect.com/science/article/pii/S2211912419300070#!
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cultivation in Colombia, and the integration of remotely sensed metrics could provide 

additional advantages, judging by its high feature importance demonstrated in Hacienda El 

Escobal. An integration of remotely sensed data and climate variables into Sotelo et al.’s (2020) 

user-focused application could be a pivotal step in combating the food insecurity that the region 

faces. Ultimately, communication of the investigation’s methods and findings are key to 

ensuring actual adoption to benefit managerial decision-making (Whelan and Taylor, 2013; 

Young and Verhulst, 2017; Sotelo et al., 2020). Thus, this investigation has potential to be 

adapted into a wider tool to provide a user-focused system for rice cultivation using multiple 

data sources. 
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Appendix 

Appendix A: The identified corresponding Sentinel-1 and Sentinel-2 scenes captured on the same dates, for use 

in cloud cover mitigation. 

Date Sentinel-1 Sentinel-2 

08/07/2017 S1B_IW_GRDH_1SDV_20170708T104211_201707

08T104236_006395_00B3E1_4D33 

S2B_MSIL1C_20170708T153109_N0

205_R025_T18NVK 

06/09/2017 S1B_IW_GRDH_1SDV_20170906T104214_201709

06T104239_007270_00CD25_4F8F 

S2B_MSIL1C_20170906T153109_N0

205_R025_T18NVK 

04/01/2018 S1B_IW_GRDH_1SDV_20180104T104213_201801

04T104238_009020_0101D3_78E7 

S2B_MSIL1C_20180104T152629_N0

206_R025_T18NVK 

31/10/2018 S1B_IW_GRDH_1SDV_20181031T104222_201810

31T104247_013395_018C7A_5FB4 

S2B_MSIL1C_20181031T152639_N0

206_R025_T18NVK 

30/12/2018 S1B_IW_GRDH_1SDV_20181230T104220_201812

30T104245_014270_01A8AF_F455 

S2B_MSIL1C_20181230T152639_N0

207_R025_T18NVK 

04/01/2019 S1B_IW_GRDH_1SDV_20190104T231309_201901

04T231334_014351_01AB40_F03F 

S2A_MSIL1C_20190104T152631_N0

207_R025_T18NVK 

05/03/2019 S1B_IW_GRDH_1SDV_20190305T231308_201903

05T231333_015226)01C7C5_91ED 

S2A_MSIL1C_20190305T152631_N0

207_R025_T18NVK 

27/08/2019 S1B_IW_GRDH_1SDV_20190827T104226_201908

27T104251_017770_021713_CE93 

S2B_MSIL1C_20190827T152649_N0

208_R025_T18NVK 

 

 


